Презентация на тему разнообразие звезд. Презентация на тему "Многообразие звезд. Созвездия.". I. Организационный момент

Слайд 2

Выбрать признаки соответствующие СОЛНЦУ 1.Шарообразная форма. 2.Источник света и тепла. 3.Не излучает собственного света и тепла. 4.Планета. 5.Раскаленное небесное тело. 6.Находится в центре солнечной системы. 7.Вращается вокруг своей оси. 8.Движется вокруг центра Солнечной системы по своей орбите. 9.Наблюдается смена времен года. 10.Звезда. 11.Происходит смена дня и ночи. Солнце- 1,2,5,6,7,10

Слайд 3

солнце звезды астероиды планеты спутники кометы метеоры метеориты

Слайд 4

Вывод:

Солнце гигантский пылающий _______ Солнце ближайшая к нам _______ Солнце находится в _______ Солнечной системы; В солнечную систему входят: _______ и _______________ Какое значение имеет Солнце? шар звезда центре солнце небесные тела.

Слайд 5

Задачи урока

познакомиться с многообразием звезд; расширить представление о строении Вселенной нам предстоит узнать: что такое созвездие; число созвездий на небе; происхождение названий созвездий.

Слайд 6

Антарес Сравнительные размеры звезд Канопус Арктур Солнце Вега Физическая природа звезд Мир звезд необычайно разнообразен. Они различаются между собой по размерам, яркости, температуре, цвету и другим признакам.

Слайд 7

Самые большие звезды, в сотни раз больше Солнца Звезды, которые в десятки раз больше Солнца. Солнце и подобные ему, а также звезды меньших размеров.

Слайд 8

Цвет и температура звёзд У Арктура желто-оранжевый оттенок, Арктур Ригель Антарес Звезды имеют самые разные цвета. Ригель бело-голубой, Антарес ярко-красный. Самые холодные звезды имеют красную окраску. Самые горячие сияют синим цветом

Слайд 9

Карта звёздного неба

Северное полушарие Южное полушарие

Слайд 10

СОЗВЕЗДИЯ

Созвездия - определённые участкизвёздного неба. Всё небо разделено на 88 созвездий.

Слайд 11

35 В созвездиях не все звезды одинаковой яркости. Самые яркие звезды в созвездиях тоже имеют свои названия. Самые яркие звезды Большой и Малой Медведицы. Существует миф об этом созвездии.

Вы уже знаете, что звёзды - это огромные пылающие шары, расположенные очень далеко от нашей планеты. Поэтому они кажутся нам на чёрном ночном небе лишь мерцающими точками. Невооружённым глазом люди могут увидеть примерно 6000 звёзд, в бинокль или телескоп - гораздо больше. Учёным известны многие и многие миллиарды звёзд.

Ближайшая к нам звезда - Солнце. Давайте познакомимся с ней подробнее.

Солнце

Это центр нашей Солнечной системы. На небе оно выглядит почти таким же, как полная Луна, но на самом деле его диаметр примерно в 400 раз больше диаметра Луны и в 109 раз больше диаметра Земли. Масса Солнца в 750 раз превышает массу всех движущихся вокруг него планет, вместе взятых.

Как и все звёзды, Солнце - гигантский пылающий шар. Температура внутри него достигает 15 млн °С. Оно испускает огромное количество тепла и света. На Землю попадает лишь незначительная их часть - одна двухмиллиардная, остальное рассеивается в космосе. Но и этого достаточно, чтобы запустить на Земле сложные процессы, такие, например, как круговорот воды, движение воздуха, рождение , штормов и т. д. И самое главное, без солнечного света и тепла невозможно было бы существование живых организмов.

Интересно, что Солнце, подобно Земле, вращается вокруг своей оси с запада на восток. Учёные внимательно изучают Солнце, так как полученные знания позволяют понять природу более далёких звёзд, а также механизм влияния Солнца на нашу планету, на жизнь организмов.

Многообразие звёзд

Если Солнце находится от Земли на расстоянии 150 млн км, то до других звёзд от нашей планеты - триллионы километров! Мир звёзд необычайно разнообразен. Они различаются между собой по размерам, цвету, яркости, температуре и многим другим признакам.

Самыми большими звёздами являются сверхгиганты. Они в сотни раз больше Солнца. Например, радиус звезды Бетельгейзе превышает радиус Солнца почти в 400 раз. Внутри этого сверхгиганта могло бы поместиться более миллиона таких звёзд, как Солнце. Звёзды, которые в десятки раз больше Солнца, называют гигантами. Само Солнце, подобные ему, а также меньшие по размерам звёзды называют карликами.

По цвету различают белые, голубые, жёлтые, красные звёзды. Наше Солнце считается жёлтым карликом. Очень интересны белые карлики - звёзды размером с нашу планету. Удивительна плотность их вещества. Одна чайная ложка вещества подобной звезды весила бы на Земле несколько тонн.

Самые яркие звёзды испускают в 100 тыс. раз больше тепла и света, чем Солнце. Но известны и такие звёзды, которые светят в миллион раз слабее Солнца.

Созвездия

Люди с древних времён наблюдали за звёздным небом. Оно помогало предсказывать наступление сезонов года, ориентироваться в дальних путешествиях, вести отсчёт времени. Уже тогда люди обратили внимание, что звёзды образуют на небе какие-то группы, скопления, фигуры. Такие фигуры из ярких звёзд назвали созвездиями. В настоящее время учёные считают созвездиями не эти фигуры, а определённые участки звёздного неба.

Всё небо разделено на 88 созвездий, из которых на территории нашей страны можно видеть 54. Названия очень многих созвездий пришли к нам из Древней Греции и связаны с персонажами различных мифов и легенд.

  1. Что такое звёзды?
  2. Какая звезда самая близкая к Земле?
  3. Как различают звёзды по размерам и по цвету?
  4. Что такое созвездия?

Звёзды - это гигантские пылающие шары, расположенные очень далеко от нашей планеты. Ближайшая к нам звезда - Солнце, центр Солнечной системы. Мир звёзд необычайно разнообразен. По размерам различают сверхгиганты, гиганты и карлики, по цвету - белые, голубые, жёлтые, красные звёзды. Всё небо разделено на 88 созвездий.

Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:


Поиск по сайту.

1. Многообразие звезд.

1.1. Светимость звезд, звездная величина.

Если смотреть на звездное небо, сразу бросается в глаза, что звезды резко отличаются по своей яркости – одни светят очень ярко, они легко заметны, другие трудно различить невооруженным глазом.

Еще древний астроном Гиппарх предложил различать яркость звезд. Звезды были разделены на шесть групп: к первой относятся самые яркие – это звезды первой величины (сокращенно - 1m, от латинского magnitudo- величина), звезды послабей - ко второй звездной величине (2m) и так далее до шестой группы – едва различимые невооруженным глазом звезды. Звездная величина характеризует блеск звезды, то есть освещенность, которую звезда создает на земле. Блеск звезды 1m больше блеска звезды 6mв 100 раз.

Изначально яркость звезд определялась неточно, на глазок; позже, с появлением новых оптических приборов, светимость стали определять точнее и стали известны менее яркие звезды со звездной величиной больше 6. (Самый мощный российский телескоп – 6-ти метровый рефлектор – позволяет наблюдать звезды до 24-й величины.)

С увеличением точности измерений, появлением фотоэлект-рических фотометров, возрастала точность измерения яркости звезд. Звездные величины стали обозначать дробными числами. Наиболее яркие звезды, а также планеты имеют нулевую или даже отрицательную величину. Например, Луна в полнолуние имеет звездную величину -12,5, а Солнце - -26,7.

В 1850 г. английский астроном Н. Поссон вывел формулу:

E1/E2=(5√100)m3-m1≈2,512m2-m1

где E1и E2 – освещенности, создаваемые звездами на Земле, а m1и m2– их звездные величины. Иными словами, звезда, например, первой звездной величины в 2,5 раза ярче звезды второй величины и в 2,52=6,25 раз ярче звезды третьей величины.

Однако значения звездной величины недостаточно для характеристики светимости объекта, для этого необходимо знать расстояние до звезды.

Расстояние до предмета можно определить, не добираясь до него физически. Нужно измерить направление на этот предмет с двух концов известного отрезка (базиса), а затем рассчитать размеры треугольника, образованного концами отрезка и удалённым предметом. Этот метод называется триангуляцией.

Чем больше базис, тем точнее результат измерений. Расстояния до звёзд столь велики, что длина базиса должна превосходить размеры земного шара, иначе ошибка измерения будет велика. К счастью, наблюдатель вместе с планетой путешествует в течение года вокруг Солнца, и если он произведёт два наблюдения одной и той же звезды с интервалом в несколько месяцев, то окажется, что он рассматривает её с разных точек земной орбиты, - а это уже порядочный базис. Направление на звезду изменится: она немного сместится на фоне более далёких звёзд. Это смещение называется параллактическим, а угол, на который сместилась звезда на небесной сфере, - параллаксом. Годичным параллаксом звезды называется угол, под которым с неё был виден средний радиус земной орбиты, перпендикулярный направлению на звезду.

С понятием параллакса связано название одной из основных единиц расстояний в астрономии – парсек. Это расстояние до воображаемой звезды, годичный параллакс которой равнялся бы точно 1’’. Годичный параллакс любой звезды связан с расстоянием до неё простой формулой:

где r – расстояние в парсеках, П – годичный параллакс в секундах.

Сейчас методом параллакса определены расстояния до многих тысяч звёзд.

Теперь, зная расстояние до звезды, можно определить ее светимость – количество реально излучаемой ею энергии. Ее характеризует абсолютная звездная величина.

Абсолютная звездная величина (M) – такая величина, которую имела бы звезда на расстоянии 10 парсек (32,6 световых лет) от наблюдателя. Зная видимую звездную величину и расстояние до звезды, можно найти ее абсолютную звездную величину:

M=m + 5 – 5 * lg(r)

Ближайшая к Солнцу звезда Проксима Центавра – крошечный тусклый красный карлик – имеет видимую звездную величину m=-11,3, а абсолютную M=+15,7. Несмотря на близость к Земле, такую звезду можно разглядеть только в мощный телескоп. Еще более тусклая звезда №359 по каталогу Вольфа: m=13,5; M=16,6. Наше Солнце светит ярче, чем Вольф 359 в 50000 раз. Звезда δЗолотой Рыбы (в южном полушарии) имеет только 8-ю видимую величину и не различима невооруженным глазом, но ее абсолютная величина M=-10,6; она в миллион раз ярче Солнца. Если бы она находилась от нас на таком же расстоянии, как Проксима Центавра, она бы светила ярче Луны в полнолуние.

Для Солнца M=4,9. На расстоянии 10 парсек солнце будет видно слабой звездочкой, с трудом различимой невооруженным глазом.

1.2. Размеры, массы, плотность звезд.

Звёзды так далеки, что даже в самый большой телескоп они выглядят всего лишь точками. Как же узнать размер звезды?

На помощь астрономам приходит Луна. Она медленно движется на фоне звёзд, по очереди перекрывая идущий от них свет. Хотя угловой размер звезды чрезвычайно мал, Луна заслоняет её не сразу, а за время в несколько сотых или тысячных долей секунды. По продолжительности процесса уменьшения яркости звезды при покрытии её Луной определяют угловой размер звезды. А, зная расстояние до звезды, из углового размера легко получить её истинные размеры.

Но лишь небольшая часть звёзд на небе расположена так удачно, что может покрываться Луной. Поэтому обычно используют другие методы оценки звёздных размеров. Угловой диаметр ярких и не очень далёких светил может быть непосредственно измерен специальным прибором – оптическим интерферометром. Но в большинстве случаев радиус звезды (R) определяют теоретически, исходя из оценок её полной светимости (L) и температуры (T):

R2 =L / (4πσT4)

Размеры звезд бывают очень различны. Встречаются звезды сверхгиганты, радиус которых в тысячи раз больше солнечного. С другой стороны известны звезды-карлики с радиусом в десятки раз меньше, чем у Солнца.

Важнейшей характеристикой звезды является масса. Чем больше вещества собралось в звезду, тем выше давление и температура в её центре, а это определяет практически все остальные характеристики звезды, а так же особенности её жизненного пути.

Прямые оценки массы могут быть сделаны только на основании закона всемирного тяготения. Масса звезд колеблется в значительно меньших пределах: примерно от 1028до 1032килограмм. Существует связь между массой звезды и ее светимостью: чем больше масса звезды, тем больше ее светимость. Светимость пропорциональна примерно четвертой степени массы звезды:

2. Строение звезд. Модели некоторых типов звезд.

Строение звёзд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества (конвекция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составляет конвективное ядро, в котором находится источник энергии. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, а его объём уменьшается. Внешние же области звезды при этом расширяются, она увеличивается в размерах, а температура её поверхности падает. Горячая звезда – голубой гигант – постепенно превращается в красный гигант.

Срок жизни звезды напрямую зависит от её массы. Звёзды с массой в сто раз больше солнечной живут всего несколько миллионов лет. Если масса составляет 2-3 солнечных срок увеличивается до миллиарда лет. В звёздах-карликах, масса которых меньше массы Солнца, конвективное ядро отсутствует. Водород в них горит, превращаясь в гелий, в центральной области. Когда он сгорает полностью, звёзды медленно сжимаются и за счёт энергии сжатия могут существовать ещё очень длительное время.

Солнце и подобные ему звёзды представляют собой промежуточный случай. У Солнца имеется маленькое конвективное ядро, но не очень чётко отделённое от остальной части. Ядерные реакции горения водорода протекают как в ядре, так и в его окрестностях. Возраст Солнца примерно 4.5-5 млрд. лет, и за это время оно почти не изменило своего размера и яркости. После исчерпания водорода Солнце может постепенно вырасти в красный гигант, сбросить чрезмерно расширившуюся оболочку и закончить свою жизнь, превратившись в белый карлик. Но это случится не раньше, чем через 5 млрд. лет.

У звезд нижней части главной последовательности (красные карлики) термоядерные реакции протекают в центральной части ядра. Перенос энергии к поверхности звезды осуществляется конвекцией. В ярких звездах верхней части главной последовательности перенос энергии от конвективного ядра осуществляется излучением. Красные гиганты имеют центральное небольшое ядро из гелия, температура в пределах которого одинакова. Это ядро окружено узкой зоной, в которой происходят ядерные реакции. Далее идет широкий слой, где энергия передается конвекцией. В отличие от красных гигантов, белые карлики однородны и состоят из вырожденного газа.

3. Переменные звезды. Новые и сверхновые.

Иногда на небе появляются новые звёзды: они вспыхивают, достигают необыкновенно яркого блеска, а потом в течение нескольких недель или месяцев угасают, изредка вспыхивают вновь, но не пропадают навсегда. Это, так называемые, переменные звёзды, звёзды блеск которых меняется. До сих пор астрономы не пришли к единому мнению, какого минимального изменения блеска достаточно для того, чтобы причислить звезду к данному классу. По этому в каталоги переменных звёзд включают все звёзды, у которых достоверно выявлены даже очень незначительные колебания блеска. Сейчас в нашей Галактике известно более 20000 переменных звёзд. Переменные звёзды различаются массой, размерами, возрастом, причинами переменности и подразделяются на несколько больших групп.

Одна из групп – пульсирующие звезды. Первым такую звезду открыл Фабрициус, ученик Тико Бриге, еще в 1596 году и назвал ее Мирой; эта звезда меняет свой блеск с периодом 332 дня. Подобные звезды с длительным периодом называют меридами. Это в основном красные гиганты меняющие блеск на несколько звёздных величин с периодами в среднем от нескольких месяцев до полутора лет.

Более распространены и хорошо изучены переменные звезды другого класса – цефеиды (названные так по имени δ Цефея, открытой Гудрайком в 1784 году). Цефеиды – пульсирующие гиганты. Их периоды весьма различны– от 1,5 до 50 суток. Цефеиды обнаружены не только в нашей галактике, но и в Магелановых облаках и в туманности Андромеды. К цефеидам относится и Полярная звезда – α Малой Медведицы. Амплитуда изменений ее блеска очень мала – от 2,64mдо 2,5m, а период – примерно 4 суток.

В чем же причина изменения блеска пульсирующих звезд? Наиболее разработанной является теория, согласно которой пульсации происходят под действием противоборствующих сил – силы притяжения и силы давления газа, выталкивающего вещество наружу.

В сжатом состоянии преобладает давление газа – звезда расширяется. Среднее, уравновешенное состояние звезда проскакивает по инерции, так как расширение идет очень быстро. В расширенном состоянии давление газа ослабевает, силы тяготения снова сжимают звезду.

Пристальное внимание астрофизиков привлекают не только пульсирующие переменные. Так называемые, взрывные звёзды – пример сложных процессов в двойных звёздных системах, где расстояние между компонентами ненамного превышает их размеры. В результате взаимодействия компонентов вещество из поверхностных слоёв менее плотной из звёзд начинает перетекать на другую звезду. В большинстве взрывных переменных та звезда, на которую перетекает газ, - белый карлик. Если на его поверхности накапливается много вещества, и резко начинаются термоядерные реакции, то наблюдается вспышка новой звезды.

Особая группа переменных – самые молодые звёзды, сравнительно недавно (по космическим масштабам) сформировавшиеся в областях концентрации межзвёздного газа. Их называют орионовыми переменными. Эти звёзды часто меняют блеск беспорядочным образом, но иногда у них прослеживаются и признаки периодичности, связанной с вращением вокруг оси.

Переменные звёзды, описанные выше, меняют свой блеск вследствие сложных физических процессов в недрах или на поверхности, либо в результате взаимодействия в тесных двойных системах. Это физически переменные звёзды. Однако найдено немало звёзд, переменность которых объясняется чисто геометрическими эффектами. Известны тысячи затменных переменных звёзд в двойных системах. Их компоненты, перемещаясь по своим орбитам, временами заходят один за другой. Самая знаменитая переменная звезда – Алголь. Яркость может быть непостоянной и из-за того, что на поверхности звезды имеются тёмные или светлые пятна. Вращаясь вокруг оси, звезда поворачивается к земному наблюдателю то более светлой, то более тёмной стороной.

Самая высокая степень переменности наблюдается у так называемых новых и сверхновых звезд. При вспышке новой звезды блеск ее возрастает в тысячи раз. После этого через несколько дней звезда начинает тускнеть, сначала быстро, затем уменьшение блеска замедляется и иногда сопровождается отдельными короткими усилениями.

Большинство новых звёзд являются компонентами тесных двойных систем, в которых одна – как правило, звезда типа нашего Солнца, а вторая – белый карлик. Орбита такой двойной системы настолько тесна, что нормальная звезда сильно деформируется приливным воздействием компактного соседа. Плазма из атмосферы этой звезды может свободно падать на белый карлик, в результате чего вокруг последнего образуется тонкий плотный слой газа, температура которого постепенно увеличивается и вырастает до столь высоких значений, что начинается термоядерная реакция синтеза гелия. Из-за очень большой плотности вещества она носит взрывообразный характер. Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки, разлёт и свечение которой наблюдается как вспышка новой звезды.

Другой вариант объяснения вспышки новых – освобождение энергии в неглубоких слоях звезды. В результате происходит взрыв, распыляющий внешние слои вещества звезды в окружающее пространство. При этом выделяется энергия, которую Солнце дает за десятки тысяч лет. Однако масса газовой оболочки, выбрасываемой новой звездой относительно невелика и составляет примерно стотысячную долю массы звезды, поэтому через несколько лет звезда возвращается в исходное состояние.

Как показывают оценки, ежегодно в нашей Галактике вспыхивает около сотни новых звёзд.

Гораздо более впечатляет взрыв сверхновой. Сверхновая в максимуме блеска имеет величину -12 – -18 m, то есть в сотни и тысячи раз ярче новых звезд. Светимость возрастает в миллионы раз. Взрыв происходит на большой глубине, большая часть массы звезды (а иногда и вся) разлетается со скоростью до 10 тыс. км. / сек., а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в чёрную дыру. Выброшенные газы образуют газовые туманности. Наиболее известная из них – Крабовидная туманность, являющаяся результатом вспышки сверхновой в 1054 году, зарегистрированной в китайских летописях. Сверхновые играют важную роль в эволюции звёзд. Они являются финалом жизни звёзд массой более 8-10 солнечных. Законченной теории взрыва сверхновой с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учёта всех протекающих при этом физических процессов.

4. Конец звезды - белые карлики,нейтронные звёзды и чёрные дыры.

После того как звезда исчерпает свои источники энергии, она начинает остывать и сжиматься. При этом физические свойства газа кардинально меняются, так что его давление сильно возрастает. Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды прекращается, она переходит в устойчивое состояние белого карлика. В современной теории звёздой эволюции белые карлики рассматриваются как конечный этап эволюции звёзд средней и малой массы (меньше 3-4 масс Солнца). После того как в центральных областях стареющей звезды выгорит весь водород, её ядро должно сжаться и разогреться. Внешние слои при этом сильно расширяются, эффективная температура светила падает, и оно становится красным гигантом. Образовавшаяся разреженная оболочка звезды очень слабо связана с ядром, и она в конце концов рассеивается в пространстве. На месте бывшего красного гиганта остаётся очень горячая и компактная звезда, состоящая в основном из гелия, - белый карлик. Благодаря своей высокой температуре она излучает главным образом в ультрафиолетовом диапазоне и ионизует газ разлетающейся оболочки. Но если масса превышает некоторое критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтральные частицы – нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов, которые настолько тесно прижаты друг к другу, что огромная звёздная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается. Плотность этого шара – нейтронной звезды – чудовищно велика даже по сравнению с плотностью белых карликов: она может превысить 10 млн. т. / см. куб.

Что произойдёт, если масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса?

Чёрные дыры образуются в результате коллапса гигантских звёзд массой более 3-х масс Солнца. При сжатии их гравитационное поле уплотняется всё сильнее и сильнее. Наконец звезда сжимается до такой степени, что свет уже не может преодолеть её притяжение. Радиус, до которого должна сжаться звезда, чтобы превратиться в чёрную дыру, называется гравитационным радиусом. Для массивных звёзд он составляет несколько десятков километров. Отличить чёрную дыру от нейтронной звезды (если излучение последней не наблюдается) очень трудно. Поэтому о существовании чёрных дыр часто говорят предположительно. Тем не менее, открытие массивных несветящихся тел – серьёзный аргумент в пользу их существования.

5.1. Физические параметры Солнца.

Благодаря своей близости к Земле Солнце, естественно, является наиболее изученной звездой. По всем параметрам Солнце – самая обычная, рядовая звезда. На диаграмме Герцшпрунга-Рассела она расположена в середине главной последовательности, среди множества ей подобных. Рассмотрим ее как представителя самого распространенного класса.

Солнце относится к спектральному классу G2, желтый карлик. Температура на поверхности Солнца приблизительно равна 6000ºС; температура в центре – около 14*106ºС. Диаметр Солнца 1,39 миллионов километров – в сто раз больше земного. Масса – 2*1030 кг, средняя плотность – 1410 кг/м3(в центре ~ 105 кг/м3). Основные составляющие Солнца, как, впрочем, и других звезд, – водород (70%) и гелий (29%). Ускорение свободного падения на поверхности – 274 метра в секунду (иными словами, сила тяжести в 28 раз больше, чем на Земле). Так как Солнце – плазменный шар, его слои вращаются вокруг оси неравномерно – у экватора быстрее, чем у полюсов.

5.2. Внутреннее строение Солнца.

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объём Солнца можно разделить на несколько областей. Познакомимся с ними, начиная с самого центра. В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоёв вещество внутри Солнца сжато, причём чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. К, происходит выделение энергии. Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идёт поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты всё время меняют направление, почти столь же часто двигаясь назад, как и вперёд. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Что такое конвекция? Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. То же самое происходит и на Солнце в области конвекции. Огромные потоки горячего газа поднимаются вверх, где отдают своё тепло окружающей среде, а охлаждённый солнечный газ опускается вниз. Конвективная зона начинается примерно на расстоянии 0.7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда всё же проникают горячие потоки из более глубоких, конвективных слоёв. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

3.3.Солнечная атмосфера.

Звёзды целиком состоят из газа. Но их внешние слои тоже именуют атмосферой.

Атмосфера Солнца начинается на 200-300 км. глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газа в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается то 8000 К на глубине 300 км. до 4000 К в самых верхних слоях. В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зёрнышками – гранулами, разделёнными сетью узких тёмных дорожек. Грануляция является результатом перемешивания всплывающих более тёплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика, но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и корону.

Хромосфера (греч. «сфера света») названа так за свою красновато-фиолетовую окраску. Она видна вовремя полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в 2-3 раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы – 10-15 тыс. км. Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоёв солнечной атмосферы, которые расположены выше хромосферы. Часто во время затмений над поверхностью солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Это самые грандиозные образования солнечной атмосферы – протуберанцы. Они имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство.

В отличие от хромосферы и фотосферы самая внешняя часть атмосферы Солнца – корона – обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам. Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Корону лучше всего наблюдать во время полной фазы солнечного затмения. Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Общий вид солнечной короны периодически меняется. Это связано с одиннадцатилетнем циклом солнечной активности. Меняется как общая яркость, так и форма солнечной короны. В эпоху максимума солнечных пятен он имеет сравнительно округлую форму. Когда же пятен мало, форма короны становится вытянутой, при этом общая яркость короны уменьшается. Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потока плазмы – солнечного ветра. Фактически мы живём окружённые солнечной короной, хотя и защищённые от её проникающей радиации надёжным барьером в виде земного магнитного поля.

Список литературы:

1. В. П. Цесевич. Переменные звезды и их наблюдение. – М. 1980.

2. В. Г. Горбацкий. Космические взрывы. – М. 1979.

3. Ф. Хойл. Галактики, ядра и квазары. – Изд. "Мир", М.1968.

4. Космонавтика. Энциклопедия. Под ред. В. П. Глушко. М. 1985.

Разнообразие звезд

Непрофессиональному или невооруженному человеческому глазу все звезды кажутся практически одинаковыми, если не считать различий в яркости, которые вполне можно объяснить их разной удаленностью. Даже через телескоп звезды кажутся всего лишь светлыми точками на небе. Однако Библия указывает, что все они различаются. Они не только получили от Бога различные имена. «Звезда от звезды разнится в славе» (1 Кор. 15:41). Слово, переведенное как «слава» (греч. doxa), обозначает также «достоинство», «честь», «хвала» или «поклонение». То есть нельзя отнести это слово только к яркости звезды; оно указывает еще и на то, что каждая звезда занимает отведенное Богом особое место в небесной структуре для исполнения своей конкретной. Богом предопределенной функции.

На различие звезд указывает тот научный факт, что каждая из них занимает свое положение на стандартной астрономической диаграмме, известной под названием диаграммы Герцшпрунга - Ресселла (ГР). Горизонтальная ось ГР-диаграммы (рис. 8) - температура звезды (уменьшается слева направо). Вертикальная ось - светимость (относительно Солнца, возрастает снизу вверх).


Рисунок 8. Диаграмма Герцшпрунга - Ресселла и разнообразие звезд.

Считается, что ГР-диаграмма подтверждает эволюционное развитие звезд. На самом деле она подкрепляет библейское учение о бесконечном разнообразии звезд, поскольку каждая звезда занимает на диаграмме свойственное только ей место.

Хотя каждая звезда занимает на диаграмме свое собственное место, астрономы сделали попытку для удобства сгруппировать звезды, дав каждой группе название в зависимости от ее расположения. Большая часть звезд оказалась в пределах широкой полосы, которая на диаграмме плавно спускается вправо. Они получили название звезд главной последовательности. Яркие, горячие звезды обычно больше и массивнее остальных. Кроме того, при движении вниз по полосе главной последовательности спектральный тип звезд имеет тенденцию меняться от голубовато-белого слева (яркие, горячие звезды) до красного справа (холодные звезды с низкой светимостью). По особенностям спектра звезды были условно разбиты на семь классов, показанных в таблице 3.

Большую часть информации о звездах дает спектральный анализ идущего от них света (что и показано в таблице). Путем анализа звездного спектра можно узнать температуру поверхности звезды, ее химический состав, характер ее магнитного поля и многие другие свойства.

Эти семь категорий охватывают далеко не все типы звезд. Сюда не входят, например, красные гиганты, сверхгиганты, белые карлики, переменные звезды, пульсары, двойные звезды, планетарные туманности, нейтронные звезды, (предположительные) черные дыры и др. Различают также звезды первого поколения (состоящие почти исключительно из легких элементов - водорода и гелия) и второго поколения (содержащие значительное количество тяжелых элементов).

Крупные звездные системы называются галактиками. Они подразделяются на различные типы: эллиптические туманности, нормальные спиральные туманности, пересеченные спирали, карликовые галактики, «неправильные» галактики. Наша Солнечная система входит в Галактику Млечный Путь, которая непосредственно относится к спиральным галактикам. В пределах одной галактики, например. Млечного Пути, существуют различные звездные скопления, которые классифицируются на рассеянные и шаровые. Помимо этого, сами галактики объединяются в различные галактические скопления. Млечный Путь и более двадцати других галактик объединяются в скопление, называемое Местной группой галактик. Кроме того, существуют скопления скоплений, или сверхскопления.

Поскольку наша книга - не учебник астрономии, а также поскольку Библия ничего не говорит обо всей этой массе звезд и галактик (фактически ни одну из галактик, кроме Млечного Пути, нельзя даже разглядеть без телескопа), мы не будем касаться классификации и обсуждать эти небесные элементы. Библия подчеркивает только факт почти бесчисленного количества и бесконечного разнообразия громадных небесных тел, которые должны побудить нас возрадоваться могуществу и величию их Творца. «Поднимите глаза ваши на высоту небес и посмотрите, кто сотворил их? Кто выводит воинство их счетом? Он всех их называет по имени: по множеству могущества и великой силе у Него ничто не выбывает» (Ис. 40:26). И хотя мы не знаем, почему Бог создал такое огромное количество разнообразных звезд, мы можем быть уверены, что на то имелись веские причины. Как указывалось в предыдущей главе, звезды были созданы навечно, так что в грядущих веках будет еще много времени, чтобы найти ответы на эти вопросы.

Лекция: Звезды: разнообразие звездных характеристик и их закономерности. Источники энергии звезд Характеристики звезд и их закономерности

Согласно современных взглядов, звезда представляет собой раскаленный газовый шар, который существует в своём состоянии достаточно большое количество времени из-за того, что у него имеется собственная внутренняя энергия. На протяжении всей своей жизни состояние звёзд поддерживается противостоянием, зависящим, в свою очередь, от гравитации, которая стремится как можно сильнее сжать небесное тело, а также давления газа, которое старается разорвать его и разнести по всему космическому пространству.

Высокая температура звезд достигается, благодаря наличию постоянно существующего источника энергии, которым являются термоядерные реакции, идущие в недрах. Основными характеристиками звезд, которые можно так или иначе определить, является их мощность, степень излучения, вес, радиус, температура, а также химический состав атмосферы, которая их окружает. Если знать большую часть данных параметров, то вполне возможно определить, сколько той или иной звезде лет. Указанные характеристики могут периодически изменяться в довольно больших границах. Кроме того, все они связаны между собой. В частности, звезды, которые ярче всего светят, чаще всего обладают и наибольшим весом. В свою очередь, мелкие звезды практически не светят, а продолжительность существования звезд является настолько большой что учёные не могут достоверно проследите ее от начала и до конца. К примеру, даже самая молодая звезда, которая утратила свое состояние, могла просуществовать несколько миллионов лет. А между тем, осуществляя наблюдение за молодыми и старыми звездами, ученые могут составить наиболее оптимальную картину мира, которая могла бы объяснить характеристики данных небесных тел.

Химическим составом звезд впервые заинтересовались в середине XIX века. В это время при помощи метода спектрального анализа было определено, из каких элементов состоит солнце, а также наиболее ближайшие к Звезде звезды. Кроме того, тот же самый метод показал, что ни на одной из обнаруженных звезд нет химических элементов, которые не были бы известны науке. Наиболее часто встречающимся элементом в составе звезд является водород, следующим за ним идет гелий, концентрация которого примерно в 3 раза меньше предыдущего. Помимо данных элементов, на звездах можно встретить и иные химические соединения – кислород, азот, железо, углерод и так далее.

Когда человек смотрит на звёзды, то первый момент, на который он обращает - это различная степень их яркости. Что касается характеристик, в данном случае основной из них является степень блеска любой звезды. Определяется, согласно историческим традициям, первая звездная величина, присвоенная наиболее ярким небесным телам, шестая - к самым слабым. Разница каждой ступени заключается в том, что звезда более высокой ступени светит примерно в два с половиной раза ярче предыдущий. Впоследствии были добавлены нулевые, а также отрицательные звездные величины - это звёзды, блеск которых невозможно увидеть невооружённым глазом.

Относительно расстояния от Земли до той или иной звезды, а также расстояния между самими звездами следует сказать, что его можно определить лишь при помощи достаточно точного оборудования. Пожалуй, именно этим объясняется тот факт, что до пятидесятых годов прошлого века точно определить эти расстояния никому не удавалось. Что касается определения расстояния на сегодняшний день, то его можно найти лишь для тех звезд, которые близко расположены к Земле.

Помимо света, а также видимого блеска одной из основных характеристик звёзд является их цвет. В частности, у большинства небесных тел заметен голубовато-белый либо красный цвет. В зависимости от света зависит и температура звезды. Голубые звезды является наиболее теплыми, а жёлтые - самыми холодными. Кроме того, необходимо отдельно выделить красные звезды, температура которых очень низкая. Однако, даже такая звезда будет горячее любого расплавленного металла для человека.

Для того чтобы более подробно узнать о той или иной звезде, в сегодняшнее время применяют спектральный аппарат. Это специальное устройство, которое устанавливается на телескоп и определяет основные характеристики звёзд.

Что касается размеров звезд, то они являются достаточно большими. Например, на сегодняшний день известна такая звезда, размер которой превышает размер солнца в несколько сотен раз. Если ее поместить вместо солнца, то она займёт практически половину всей Солнечной системы. Между тем, данная звезда находится не в нашей галактике. Прямые оценки массы могут быть сделаны только на основании закона всемирного тяготения. Такие оценки удалось получить для большого числа звезд, входящих в двойные системы, путем измерения скорости их движения вокруг общего центра масс. Все другие способы вычисления массы считаются косвенными, поскольку они строятся не на законе тяготения, а на анализе тех звездных характеристик, которые так или иначе связаны с массой. В основном это светимость. Практически для всех звезд действует правило: чем выше светимость, тем больше масса.

Ещё одной достаточно важной характеристикой звёзд является их масса. От этого зависит ее температура и давление, что в свою очередь влияет и на остальные характеристики. Чем меньше масса звезды, тем она будет холоднее. Изучая основные характеристики звезд и соотнося их друг с другом, ученые в сфере астрономии смогли установить те, факты, которые до этого были неизвестны человечеству. В частности, они определили, как устроено то или иное небесное тело, как оно появляется и какие изменения происходят в течение всей жизни этого тела.

Источники энергии звезд

Звезды светят очень и очень долго. Откуда же берётся огромная энергия, необходимая для излучения звезд? Успехи ядерной физики и квантовой механики позволили сделать вывод о том, что таким источником являются термоядерные реакции, происходящие в недрах звёзд благодаря очень высоким температурам. Это реакции синтеза ядер гелия из ядер водорода (протонов). 2 протона на огромной скорости сталкиваются и соединяются в дейтрон, состоящий из 1 протона и 1 нейтрона. Далее дейтрон сталкивается с другим протоном и испускает γ –квант, в результате образуется частица Не 3 . Заключительная реакция, синтезирующая Не 4 происходит между двумя частицами Не 3 . Схема реакций.