Где используется гидразин. Гидразин как оружие возмездия "сумрачного германского гения" не сработал. История с предысторией

Завод по производству гидразина в России построен в рамках организации производства стратегических, дефицитных и импортозамещающих материалов. Он расположен в Нижегородской области, проектная мощность — 15 т в год. В настоящее время идут комплексные испытания оборудования.

Производство гидразина и гептила (несимметричный диметилгидразин) в России было свернуто в 1990-е годы. С тех пор гидразин закупался за рубежом, в основном в Германии. В 2014 году, после обострения отношений со странами западного блока, поставки гидразина в РФ прекратились.

В октябре 2014 года санкции были частично ослаблены: совет Европейского союза разрешил поставлять в Россию гидразин и гептил в тех случаях, когда топливо приобретается для реализации совместных с Европейским космическим агентством программ либо для запусков европейских космических аппаратов. Продавцам указали следить за тем, чтобы российские компании покупали строго необходимое количество топлива под конкретный проект.

Эмбарго никак не сказалось на космических программах. Точнее, сказаться пока не успело: в РФ были накоплены запасы тех марок топлива, которые попали под санкции. Главным образом, о создании запасов позаботились в Минобороны, уточнил собеседник в Роскосмосе.

— Основного ракетного топлива — несимметричного диметилгидразина, на котором работают первые ступени «Протонов» и ряд других ракет, у нас накоплено на десятилетие вперед, так что дефицита не предвидится, — заверил Иван Моисеев, научный руководитель Института космической политики. — А вот с особо чистыми гидразинами, такими как амидол, возникают проблемы. Поэтому Роскосмос и решил этот вопрос оперативно.

Вещество с очень простой формулой и очень непростой историей, в которой были и взлеты (в прямом смысле этого слова), и падения (к счастью, в основном в переносном). Это гидразин — H 2 N—NH 2 .

История с предысторией

В том, что гидразин был открыт в самом конце XIX века, сомневаться не приходится. В менделеевских «Основах химии», равно как и в «Истории химии» Микеле Джуа, первооткрывателем гидразина назван Теодор Курциус (1857—1928) — известный в свое время химик, профессор в Киле и Гейдельберге.

Однако во французских книгах по истории химии утверждается, что чистый безводный гидразин был получен лишь через семь лет после опытов Курциуса, в 1894 году, французским химиком Лобре де Брином. Курциус же получил лишь сульфат гидразина — соль состава N 2 H 4 -H 2 SO 4 .

Как он есть

Не слишком привлекательно выглядело новое вещество. Бесцветная довольно вязкая жидкость, дымящаяся на воздухе, с запахом нашатырного спирта, не очень стойкая к окислителям (склонная к самовоспламенению) и гигроскопичная. Но были у гидразина свойства, заинтересовавшие химиков. Например, он оказался восстановителем, причем очень активным. Окислы многих металлов — железа, хрома, меди — при контакте с ним восстанавливались столь бурно, что избыток гидразина воспламенялся и горел фиолетовым пламенем.

Позже выяснили, что под действием этих окислов происходит каталитическое разложение гидразина на газообразные азот и аммиак. Таким образом, он оказался пригоден в качестве ракетного топлива. Но с этой точки зрения гидразином заинтересовались спустя много лет. Пока же его изучали как достаточно своеобразный химический феномен.

Тепла при горении гидразина выделяется сравнительно мало—намного меньше, чем при горении углеводородов. Гидразингидрат в этом смысле еще хуже. Но оба они хорошо горят при малых затратах окислителя (последним могут быть воздух и кислород, перекись водорода, азотная кислота и фтор; кроме того, как мы уже знаем, гидразин может создавать реактивную тягу и без помощи реакции окисления, разлагаясь на катализаторах). Это обстоятельство, а также большое количество образующихся при горении газов сделали гидразин и его производные незаменимыми веществами ракетных полигонов.

Макро и микро

Двигателем второй ступени ракет «Космос», посредством которых в 1962— 1967 гг. на космические орбиты выведено около 200 искусственных спутников Земли, был жидкостной реактивный двигатель РД-119. Горючим для него служило вещество, обозначаемое в справочниках четырьмя буквами: НДМГ. Расшифровываются они так: несимметричный диметилгидразин. Еще одно важное для ракетной техники производное гидразина! Его формула: (CH 3) 2 NNH 2 .

В отличие от безводного гидразина и гидразингидрата это вещество легко, в любых соотношениях, смешивается не только с водой, но и с нефтепродуктами. НДМГ входит в состав многих жидких ракетных топлив. Известное американское горючее для ЖРД «Аэрозин-50» это смесь гидразина и НДМГ.

НДМГ от гидразина отличается не сильно: то же агрегатное состояние, близкие химические и физические свойства, тот же малоприятный запах.

Одна существенная частность. Несимметричный диметилгидразин — хороший растворитель. Поэтому в нем набухают, утрачивая прочность и плотность, большинство известных прокладочных материалов. Исключение составляют лишь некоторые специальные резины, полиэтилен и, конечно, «пластмассовая платина» — фторопласт-4.

Пределы взрывоопасных концентраций для смесей НДМГ с воздухом чрезвычайно широки: от 2 до 99% НДМГ по объему. Уже поэтому лучше не допускать его контакта с воздухом. Но есть и другие причины. Во-первых, он окисляется кислородом; во-вторых, взаимодействует с двуокисью углерода, содержащейся в воздухе (при этом образуются твердые соли); в-третьих, как и гидразин, НДМГ поглощает из воздуха влагу. Все три процесса приводят к порче достаточно дорогого НДМГ. Потому эту непростую жидкость рекомендуют хранить под азотной «подушкой».

Выше рассказано о наиболее известных примерах использования гидразина и его производных в ракетной технике. Однако это был, если хотите, итог, высшая точка взлета. А предшествовали ей события менее знаменательные.

Многим знакомо имя немецкого инженера и изобретателя Хельмута Вальтера. До начала второй мировой войны он был техническим руководителем небольшой приборостроительной фирмы, а к концу войны стал одним из самых почитаемых (и глубоко засекреченных) деятелей науки и техники в фашистской Германии. Как и Вернер фон Браун, он разрабатывал «оружие возмездия», на которое так рассчитывали гитлеровцы и которое им почти ничего не дало.

Вся карьера Вальтера связана с концентрированными растворами перекиси водорода. Их он использовал и в двигателях для подводной лодки новой конструкции, и в реактивном двигателе собственной конструкции. Восьмидесяти процентная перекись водорода работала в этом двигателе как окислитель, горючим же для него служила смесь почти равных количеств метилового спирта и гидразингидрата. Гидразингидрат в составе топлива обеспечивал его легкое и безотказное самовоспламенение.

Двигатели Вальтера устанавливали на истребителях Мессершмитта «Ме-163» и на пилотируемом самолете-снаряде «Наттер». Последний предназначался для борьбы с бомбардировочной авиацией. Примитивная деревянная конструкция самолета несла мощный заряд из 24 твердотопливных реактивных снарядов. После залпа летчик и дорогостоящий двигатель спасались на парашютах, а «Наттер» самоуничтожался в воздухе.

Дальше испытаний (сентябрь 1944 г.) затея с «Наттером» не пошла. Она не повлияла на исход войны, как, впрочем, и другие начинания Хельмута Вальтера. Однако работы по использованию гидразина и его производных в качестве реактивного топлива были продолжены в разных странах. В частности, в США вскоре после войны построены ракеты «Бомарк», «Авангард», «Тор-Эйбл», «Найк-Аякс», работающие на смеси, несимметричного диметилгидразина и керосина. Позже НДМГ вошел в состав топлива двигателей второй ступени ракет «Тор-Дельта», «Торад-Дельта», «Тор-Аджена», «Торад-Аджена». Он же входил в состав горючего первой и второй ступеней мощных ракет-носителей «Титан-М», «Титан-Ill». А в реактивном двигателе французского истребителя- бомбардировщика «Мираж-111» НДМГ используют как активизирующую добавку к традиционному топливу.

Современной космической технике нужны не только гигантские двигатели ракет первой и второй ступени. В последнее время все больше внимания уделяют разработке микрореактивных двигателей, с помощью которых корабли и спутники перемещаются в открытом космосе в условиях невесомости — меняют орбиты, маневрируют. В этих микродвигателях гидразину тоже отводят важную роль.

В условиях орбитального полета одним из самых главных требований к ракетному топливу становятся простота и надежность его воспламенения (или начала реакции самопроизвольного разложения с выделением газообразных продуктов). С этой точки зрения гидразин и его производные не имеют равных. Они воспламеняются очень легко, а разложение гидразина на азот и аммиак возможно как под действием нагрева, так и под влиянием катализаторов. В итоге микродвигатели с гидразином и его производными изготавливают в нескольких странах.

Но не только в космосе, не только для космической техники нужен нам гидразин. Сегодня химии гидразина посвящено много исследований и книг. Производных его получены сотни тысяч, и некоторые из них оказались практически значимыми.

В терапевтической практике используют многие биологически активные вещества — производные гидразина. Известна, в частности, группа лекарств от туберкулеза, в которых действующим началом стал гидразид изоникотиновой кислоты — производное гидразина. Другие его производные используют как средство против нервных депрессий.

А гидразид малеиновой кислоты — стимулятор роста картофеля, сахарной свеклы, винограда, табака.

Конечно, далеко не все производные гидразина применимы для подобных целей. Давно известно, что и сам гидразин, и его простейшие производные, применяемые в ракетной технике, токсичны. Сообщения о токсичности многих производных гидразина, появившиеся в медицинской литературе в последние годы, заставляют относиться к этим веществам с еще большей настороженностью и вниманием. Однако от их вредностей научились защищаться достаточно надежно.

Разработаны и кое-где уже используются на практике высокоэффективные и надежные гидразин-воздушные и гидразин-кислородные топливные элементы — химические источники тока. Они работали, в частности, вместо аккумуляторов на борту канадской одноместной научно-исследовательской подводной лодки «Стар».

При работе в топливном элементе из сравнительно ядовитого гидразина (или гидразингидрата) образуются лишь совершенно безвредные вода и азот. Электрическая энергия вырабатывается благодаря протекающей на аноде реакции:

Экологическая безвредность — главное достоинство таких источников тока.

Гидразин-воздушные топливные элементы прошли успешные испытания на микромотоцикле и грузовом электромобиле, развивавшем скорость больше 70 километров в час.

Одним словом, гидразину нашлось дело и в космосе, и под водой, и на земле.

Недавно случившаяся авария ракеты« Днепр», космического носителя, переделанного из военной ракеты Р-36М УТТХ, снова вызвала интерес к ракетному топливу.

V-2 («Фау-2») легла в основу всей послевоенной ракетной техники, и американской, и советской

Запуск 900 ракет «Фау-2» требовал 12 тыс. т жидкого кислорода, 4 тыс. тонн этилового спирта, 2 тыс. т метанола, 500 т перекиси водорода и 1,5 тыс. т взрывчатки

Вместо спирта, который наряду с жидким кислородом использовал Вернер фон Браун, Королев для своих первых ракет выбрал керосин

Ни бензин, не керосин, ни дизельное топливо не воспламеняются сами при взаимодействии с кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу

Ракета S-4B, третья ступень еще одного детища Вернера фон Брауна — самой мощной американской ракеты-носителя Saturn V. В активе последней — 13 успешных запусков (с 1967 по 1973 год). Именно с ее помощью человек ступил на Луну

Жидкостные ракетные двигатели (ЖРД) — очень совершенные машины, и их характеристики на 90%, а то и больше, определяются примененным топливом. Эффективность же топлива зависит от состава и запасенной энергии. Идеальное топливо должно состоять из легких элементов — из самого начала таблицы Менделеева, дающих максимальную энергию при окислении. Но это не все требования к топливу — еще оно должно быть совместимым с конструкционными материалами, стабильным при хранении и по возможности недорогим. Но ракета — это не только двигатель, но еще и баки ограниченного объема: чтобы взять на борт больше топлива, его плотность должна быть повыше. Кроме топлива ракета везет с собой и окислитель.

Идеальный окислитель с точки зрения химии — жидкий кислород. Но одной химией ракета не исчерпывается, это конструкция, в которой все взаимоувязано. Вернер фон Браун выбрал для Фау-2 спирт и жидкий кислород, и дальность ракеты получилась 270 км. Но если бы ее двигатель работал на азотной кислоте и дизельном топливе, то дальность увеличилась бы на четверть, потому что такого топлива в те же баки помещается на две тонны больше!

Ракетное топливо — кладовая химической энергии в компактном виде. Топливо тем лучше, чем больше энергии запасает. Поэтому вещества, хорошие для ракетного топлива, всегда чрезвычайно химически активны, непрерывно пытаются высвободить скрытую энергию, разъедая, сжигая и разрушая все вокруг. Все ракетные окислители либо взрывоопасны, либо ядовиты, либо нестойки. Жидкий кислород — единственное исключение, и то только потому, что природа приучилась к 20% свободного кислорода в атмосфере. Но даже жидкий кислород требует уважения.

Хранить вечно

Баллистические ракеты Р-1, Р-2 и Р-5, созданные под руководством Сергея Королева, не только показали перспективность этого вида оружия, но и дали понять, что жидкий кислород не очень подходит для боевых ракет. Несмотря на то, что Р-5М была первой ракетой с ядерной боеголовкой, а в 1955 году даже было произведено реальное испытание с подрывом ядерного заряда, военных не устраивало, что ракету нужно заправлять непосредственно перед стартом. Требовалась замена жидкому кислороду, замена полноценная, такая, чтоб и в сибирские морозы не замерзала, и в каракумскую жару не выкипала: то есть с диапазоном температур от -55 градусов до +55 градусов Цельсия. Правда, с кипением в баках проблем не ожидалось, так как давление в баке повышенное, а при повышенном давлении и температура кипения больше. Но кислород ни при каком давлении не будет жидким при температуре выше критической, то есть -113 градусов Цельсия. А таких морозов даже в Антарктиде не бывает.

Азотная кислота HNO3 — другой очевидный окислитель для ЖРД, и ее использование в ракетной технике шло параллельно с жидким кислородом. Соли азотной кислоты — нитраты, особенно калийная селитра — уже много веков использовались как окислитель самого первого ракетного топлива — черного пороха.

Молекула азотной кислоты содержит как балласт лишь один атом азота да «половинку» молекулы воды, а два с половиной атома кислорода могут быть использованы для окисления горючего. Но азотная кислота — очень «хитрое» вещество, настолько странное, что непрерывно реагирует само с собой — атомы водорода от одной молекулы кислоты отщепляются и прицепляются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Из-за этого в азотной кислоте обязательно образуются разного рода примеси.

Кроме того, азотная кислота очевидно не удовлетворяет требованиям совместимости с конструкционными материалами — под нее специально приходится подбирать металл для баков, труб, камер ЖРД. Тем не менее «азотка» стала популярным окислителем еще в 1930-е годы — она дешева, производится в больших количествах, достаточно стабильна, чтобы ею можно было охлаждать камеру двигателя, пожаро- и взрывобезопасна. Плотность ее заметно больше, чем у жидкого кислорода, но главное ее достоинство по сравнению с жидким кислородом состоит в том, что она не выкипает, не требует теплоизоляции, может неограниченно долго храниться в подходящей таре. Только где ее взять, подходящую тару?

Все 1930-е и 1940-е годы прошли под знаменем поиска подходящих емкостей для азотной кислоты. Но даже самые стойкие сорта нержавеющей стали медленно разрушались концентрированной азоткой, в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов, который, конечно же, нельзя подавать в ракетный двигатель — он мгновенно забьется и взорвется.

Для уменьшения коррозионной активности азотной кислоты в нее стали добавлять различные вещества, пытаясь, зачастую методом проб и ошибок, найти комбинацию, которая бы, с одной стороны, не испортила окислитель, с другой — сделала его более удобным в использовании. Но удачная добавка была найдена только в конце 1950-х американскими химиками — оказалось, что всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз! Советские химики задержались с этим открытием лет на десять-пятнадцать.

Секретные присадки

Тем не менее первый в СССР ракетный самолет-перехватчик БИ-1 использовал именно азотную кислоту и керосин. Баки и трубы пришлось делать из монель-металла — сплава никеля и меди. Этот сплав получался «естественным» образом из некоторых полиметаллических руд, поэтому был популярным конструкционным материалом второй трети ХХ века. О его внешнем виде можно судить по металлическим рублям — они сделаны из почти «ракетного» сплава. Во время войны не хватало, однако, не только меди с никелем, но и нержавеющей стали. Приходилось использовать обычную, покрытую для защиты хромом. Но тонкий слой быстро проедался кислотой, поэтому после каждого запуска двигателя остатки топливной смеси приходилось скребками удалять из камеры сгорания — техники поневоле вдыхали ядовитые испарения. Один из пионеров ракетной техники Борис Черток однажды едва не погиб при взрыве двигателя для БИ-1 на стенде, этот эпизод он описал в своей замечательной книге «Ракеты и люди».

Помимо добавок, снижающих агрессивность азотной кислоты, в нее пытались добавлять разные вещества, чтобы повысить ее эффективность как окислителя. Наиболее результативным веществом была двуокись азота, еще одно «странное» соединение. Обычно — газ бурого цвета, с резким неприятным запахом, но стоит его слегка охладить, он сжижается и две молекулы двуокиси склеиваются в одну. Поэтому соединение часто называют четырехокисью азота, или азотным тетраоксидом — АТ. При атмосферном давлении АТ кипит при комнатной температуре (+21 градус), а при -11 градусах замерзает. Чем ближе к точке замерзания, тем бледнее цвет соединения, становящегося под конец бледно-желтым, а в твердом состоянии — почти бесцветным. Это оттого, что газ состоит в основном из молекул NO2, жидкость — из смеси NO2 и димеров N2O4, а в твердом веществе остаются одни только бесцветные димеры.

Добавка АТ в азотную кислоту увеличивает эффективность окислителя сразу по многим причинам — АТ содержит меньше «балласта», связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты. Самое интересное, что с растворением АТ в АК плотность раствора сначала растет и достигает максимума при 14% растворенного АТ. Именно этот вариант состава и выбрали американские ракетчики для своих боевых ракет. Наши же стремились повысить характеристики двигателей любой ценой, поэтому в окислителях АК-20 и АК-27 было по 20% и 27% соответственно растворенного азотного тетраоксида. Первый окислитель использовался в зенитных ракетах, а второй — в баллистических. КБ Янгеля создало ракету средней дальности Р-12, которая использовала АК-27 и специальный сорт керосина ТМ-185.

Зажигалки

Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Военных больше всего устраивал бы продукт перегонки нефти, но и другие вещества, если они производились в достаточных количествах и стоили недорого, тоже можно было использовать. Проблема была одна — ни бензин, ни керосин, ни дизельное топливо не воспламеняются сами при контакте с азотной кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу. Хотя наша первая межконтинентальная ракета Р-7 использовала пару «керосин — жидкий кислород», стало ясно, что пиротехническое зажигание неудобно для боевых ракет. При подготовке ракеты к пуску требовалось вручную вставить в каждое сопло (а их у Р-7 ни много ни мало 32−20 основных камер и 12 рулевых) деревянную крестовину с зажигательной шашкой, подключить все электропровода, которыми шашки воспламеняются, и проделать еще много разных подготовительных операций.

В Р-12 эти недостатки были учтены, и зажигание обеспечивалось пусковым горючим, которое самовоспламенялось при контакте с азотной кислотой. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250». Наши ракетчики переименовали его в соответствии с ГОСТами в ТГ-02. Теперь ракета могла стоять заправленной несколько недель, и это был большой успех, так как ее можно было бы запустить в течение пары часов вместо трех суток для Р-7. Но три компонента — много для боевой ракеты, а для использования в качестве основного горючего ТГ-02 годился только для зенитных ракет; для баллистических ракет дальнего действия нужно было что-то более эффективное.

Гиперголики

Химики назвали пары веществ, самовоспламеняющихся при контакте, «гиперголическими», то есть, в приблизительном переводе с греческого, имеющими чрезмерное сродство друг с другом. Они знали, что лучше всего воспламеняются с азотной кислотой вещества, имеющие в составе, кроме углерода и водорода, азот. Но «лучше» — это насколько?

Задержка самовоспламенения — ключевое свойство для пар химических веществ, которые мы хотим сжечь в ракетном двигателе. Представьте — включили подачу, горючее и окислитель накапливаются в камере, а воспламенения нет! Зато, когда оно наконец происходит, мощный взрыв разносит камеру ЖРД на кусочки. Для определения задержки самовоспламенения разные исследователи строили самые разные по сложности стенды — от двух пипеток, синхронно выдавливающих по капельке окислителя и горючего, до маленьких ракетных двигателей без сопла — форсуночная головка и короткая цилиндрическая труба. Все равно взрывы раздавались очень часто, действуя на нервы, выбивая стекла и повреждая датчики.

Очень быстро был обнаружен «идеальный гиперголь» — гидразин, старый знакомый химиков. Это вещество, имеющее формулу N2H4, по физическим свойствам очень похоже на воду — плотность на несколько процентов больше, температура замерзания +1,5 градуса, кипения +113 градусов, вязкость и все прочее — как у воды, но вот запах…

Гидразин был получен впервые в чистом виде в конце XIX века, а в составе ракетного топлива впервые употреблен немцами в 1933 году, но в качестве сравнительно небольшой добавки для самовоспламенения. Как самостоятельное горючее гидразин был дорог, производство его недостаточно, но, главное, военных не устраивала его температура замерзания — выше, чем у воды! Нужен был «гидразиновый антифриз», и его поиски шли непрерывно. Уж очень гидразин хорош! Вернер фон Браун для запуска первого спутника США «Эксплорер» заменил спирт в ракете «Редстоун» на «гидин» (Hydyne), смесь 60% гидразина и 40% спирта. Такое горючее улучшило энергетику первой ступени, но для достижения необходимых характеристик пришлось удлинить баки.

Гидразин, как и аммиак NH3, состоит только из азота и водорода. Но если при образовании аммиака из элементов энергия выделяется, то при образовании гидразина энергия поглощается — именно поэтому прямой синтез гидразина невозможен. Зато поглощенная при образовании энергия выделится потом при сгорании гидразина в ЖРД и пойдет на повышение удельного импульса — главного показателя совершенства двигателя. Пара кислород-керосин позволяет получить удельную тягу для двигателей первой ступени в районе 300 секунд. Замена жидкого кислорода на азотную кислоту ухудшает эту величину до 220 секунд. Такое ухудшение требует увеличения стартовой массы почти в два раза. Если же заменить керосин гидразином, большую часть этого ухудшения можно «отыграть». Но военным было нужно, чтобы горючее не замерзало, и они требовали альтернативу.

Пути разошлись

И тут пути наших и американских химиков разошлись! В СССР химики придумали способ получения несимметричного диметилгидразина, а американцы предпочли более простой процесс, в котором получался монометилгидразин. Обе эти жидкости, несмотря на их чрезвычайную ядовитость, устраивали и конструкторов, и военных. К аккуратности при обращении с опасными веществами ракетчикам было не привыкать, но все же новые вещества были настолько токсичными, что обычный противогаз не справлялся с очисткой воздуха от их паров! Нужно было либо использовать изолирующий противогаз, либо специальный патрон, который окислял токсичные пары до безопасного состояния. Зато метилированные производные гидразина были менее взрывоопасными, меньше впитывали водяные пары, были термически более стойкими. Но вот температура кипения и плотность по сравнению с гидразином понизились.

Поэтому поиски продолжались. Американцы одно время очень широко использовали «Аэрозин-50» — смесь гидразина и НДМГ, что было следствием изобретения технологического процесса, в котором они получались одновременно. Позднее этот способ был вытеснен более совершенными, но «Аэрозин-50» успел распространиться, и на нем летали и баллистические ракеты «Титан-2», и корабль «Аполлон». Ракета «Сатурн-5» разгоняла его к Луне на жидком водороде и кислороде, но собственный двигатель «Аполлона», которому нужно было включаться несколько раз в течение недельного полета, должен был использовать самовоспламеняющееся долгохранимое топливо.

Тепличные условия

Но дальше с баллистическими ракетами произошла удивительная метаморфоза — они спрятались в шахты, для защиты от первого удара противника. При этом уже не требовалось морозостойкости, так как в шахте воздух подогревался зимой и охлаждался летом! Топливо можно было подбирать, не учитывая его морозоустойчивости. И сразу же двигателисты отказались от азотной кислоты, перейдя на чистый азотный тетраоксид. Тот самый, что кипит при комнатной температуре! Ведь давление в баке повышенное, а при повышенном давлении и температура кипения нас беспокоит гораздо меньше. Зато теперь коррозия баков и трубопроводов уменьшилась настолько, что стало возможным хранить ракету заправленной на протяжении всего срока боевого дежурства! Первой ракетой, которая могла стоять заправленной 10 лет подряд, стала УР-100 конструкции КБ Челомея. Почти одновременно с ней появилась гораздо более тяжелая Р-36 фирмы Янгеля. Нынешний ее потомок, последняя модификация Р-36М2, кроме баков, мало имеет общего с первоначальной ракетой.

По энергетическим характеристикам пары «кислород — керосин» и «четырехокись азота — НДМГ» очень близки. Но первая пара хороша для космических ракет-носителей, а вторая — для МБР шахтного базирования. Для работы с такими ядовитыми веществами была разработана специальная технология — ампулизация ракеты после заправки. Смысл ее понятен из названия: все магистрали перекрываются необратимо, чтобы избежать даже малейших утечек. Впервые она была применена на ракетах для подводных лодок, которые тоже использовали такое топливо.

Твердое топливо

Американские же ракетчики для боевых ракет предпочли твердое топливо. Оно имело несколько худшие характеристики, зато ракета требовала гораздо меньше подготовительных операций при запуске. Наши тоже пытались использовать твердотопливные ракеты, но последнюю ступень все равно приходилось делать жидкостной, для того чтобы скомпенсировать разброс работы твердотопливных двигателей, которые невозможно регулировать так, как жидкостные. А позднее, когда появились ракеты с несколькими боеголовками, на последнюю жидкостную ступень легла задача «разведения» их по целям. Так что пара «АТ-НДМГ» без работы не осталась. Не остается и сейчас: на этом топливе работают двигатели космического корабля «Союз», Международной космической станции и многих других аппаратов.

Позволила применять его для высокотемпературной консервации поверхностей стальных аппаратов без дополнительных потерь реагента. 

Хотя приведенные в 2 общие уравнения в случае одноступенчатых реакций значительно упрощаются (М = 1) , тем не менее даже в этом простом случае невозможно получить точное аналитическое решение . Следовательно, чтобы проверить справедливость упрощенных моделей и приближенных формул, имеет смысл получить численные решения этих уравнений. В работе приводятся расчеты для одноступенчатых реакций первого порядка ниже излагаются более детальные результаты работы Р] для одноступенчатых реакций второго порядка . В работе содержатся расчеты для реакции разложения гидразина, рассматриваемой как цепная реакция , и используется (необоснованно , см. 5 главы 5) для активных центров. 

Выход относится к тиосемикарбазону. в В условиях разложения гидразина альдегид нестоек. 

Очевидно, что при разработке гидразиновых ЭХГ необходимо стремиться к созданию таких катодов, где реакция разложения гидразина протекала бы с минимальной скоростью , чему способствует понижение температуры и концентрации гидразина в топливной смеси. 

Второе из приведенных выше объяснений взаимосвязи к. а. с величиной АП можно, по-видимому, принять для изученной нами каталитической реакции разложения гидразина . Суммарная константа скорости реакции является в этом случае произведением частных констант , некоторые из которых пропорциональны концентрации электронов /г, а другие - концентрации дырок п. Если в суммарную константу входит произведение 

    Разложение гидразина по второму направлению (686) характеризуется высокими стехиометрическими коэффициентами. Для 

На рис. 3 представлены зависимости логарифма времени достижения 25%-НОГО разложения гидразина от обратной абсолютной температуры для трех высокоомных образцов Ое. Образец 1 получен дроблением монокристалла р-типа (легированного индием), образец 2-дроблением монокристалла п-типа (легированного сурьмой), образец 3 получен из поликристаллического Ое я-типа. 

Наклон всех трех прямых дает для энергии активации разложения гидразина на Ое величину 20 3 ккал моль. Сдвиг прямых относительно друг друга хорошо согласуется с измерениями поверхности порошков Ое по адсорбции криптона . Таким образом , в случае высокоомных образцов Ое имеет место полная тождественность каталитических свойств образцов п- и р-типа. 

В период монтажа наиболее технологичным способом защиты внутренних поверхностей оборудования из перлитных сталей зарекомендовал себя так называемый мокрый способ хранения с использованием водного раствора гидразина и аммиака с концентрацией 600-100 мг/л канГидразин-гидрат (М2Н4-Н20) - бесцветная жидкость, легко поглощающая из воздуха воду , углекислоту и кислород. Гидразин-гидрат хорошо растворим в воде. Температура кипения его 118° С, температура замерзания -51,7° С, относительная молекулярная масса -50, плотность-1,03г/см, теплота парообразования 125 ккал/кг, теплоемкость 0,05 ккал/(кг-° С), температура вспышки 73° С. Водные растворы его не огнеопасны, они легко разлагаются кислородом воздуха . Чтобы предотвратить разложение гидразина , его растворы хранят в атмосфере азота . Приготовленный водный раствор гидразина н аммиака заливается в емкости так, чтобы не оставалось воздушных мешков. 

Тогда уравнение (92) при г = г имеет интеграл = О, так как начальная (так же как и конечная) концентрация радикалов равна нулю. Так как функции скорости реакции Юг являются функциями т и молярных долей Х, уравнения, подобные уравнению (95), позволяют явно выразить величину Хг через х и остальные Х. Следовательно, если уравнение (95) справедливо для каждого радикала, то молярные доли всех этих продуктов промежуточных реакций могут быть исключены из уравнений пламени, уравнений (92) и (93), и потоки долей всех этих веществ равны нулю. Так как оставшиеся доли потоков , е, связаны между собой стехиометрическими соотношениями , среди уравнений (92) лишь одно оказывается независимым (в то же время несколько соотношений, конечно, по-прежнему определяются уравнением (93)), и задача сводится к задаче с одноступенчатой реакцией . В этом случае уравнения пламени могут быть решены точно и все молярные доли , включая Х, могут быть выражены через т. Такое обобщенное стационарное приближение хорошо оправдалось в случае пламени разложения озона оказалось сомнительным для пламени разложения гидразина и привело к очень плохому описанию)аспределения атомов брома в бромо-водородпом пламени) 

Уменьшение к. а. с ростом ширины запрещенной зоны имеет место при хемосорбции Оз и в реакциях обмена с обмена водородом С2Н4 с ВзО, гомомолекулярного обмена 0 , обмена 0 с поверхностью окислов , рекомбинации Н-атомов, рекомбинации 0-атомов, гидрирования этилена, гидрирования СО в СН4, гидрирования нитробензола в анилин, дегидрирования циклогексана , дегидрирования этилового , изопропилового, н-бути-лового спиртов, дегидрирования НСООН, разложения гидразина, KN8, 

Влияние К изучалось на полихелатах различной структуры . Замена радикалов алифатического ряда - гексаметилена или диметилена - на радикал ароматического строения - фенилен или дифенилен - в медных полихелатах, полученных на основе бисдитиокарбаматов, снижает скорость разложения гидразина и повышает скорость разложения перекиси водорода. Аналогичное влияние наблюдается и для других металлов . Полихелаты кобальта с радикалом К2 - гексаметиленом - активны в реакции разложения перекиси водорода, а с радикалом Ка-дифенил ом - неактивны. 

Несмотря на трудность измерения каталитической активности пере-кристаллизованпых мономеров, можно проследить тегщенцию к снижению каталитической активности в реакции разложения гидразина при введении замещающих водород донорных групп (рис. 4). При этом выяснилось, что изменение положения замещающей водород группы из пара-в орто- оказывает сильное влияние на активность (рис. 5). 

NHa (газ). Шварц исследовал кинетику термического разложения гидразина в токе толуола и нашел Dq (HaN - NlTg) = 60 + 3 ккалЫоль. Это значение было подтверждено Фонером и Хадсоном , которые измерили потенциал появления иона NHg" из N2H4 и потенциал ионизации NHg и нашли Do (HgN - NHj) = 58 + 9 ккалЫоль. Найденному Шварцем значению Dq (HgN - NH.j) соответствует значение 

Здесь А представляет собой исходное вещество (в случае разложения гидразина - N2H4), В - активное промежуточное вещество (NHa или Н) и С продукт реакции (N , На или NHs). Обозначим концентрации веществ А и В через д и Лв константы скорости процессов (I), (II) 

Общий ход

Гидразин

Гидразин

Общие
Систематическое наименование гидразин
Химическая формула N 2 H 4
Физические свойства
Состояние (ст. усл.) бесцветная жидкость
Отн. молек. масса 32.05 а. е. м.
Молярная масса 32.05 г/моль
Плотность 1.01 г/см³
Термические свойства
Температура плавления 1 °C
Температура кипения 114 °C
Химические свойства
Растворимость в воде смешивается г/100 мл
Классификация
Рег. номер CAS

Гидрази́н (диамид) H 2 N-NH 2 - бесцветная, сильно гигроскопическая жидкость с неприятным запахом.

Молекула N 2 H 4 состоит из двух групп NH 2 , повёрнутых друг относительно друга, что обусловливает полярность молекулы гидразина, μ = 0,62·10 −29 Кл · м. Смешивается в любых соотношениях с водой , жидким аммиаком , этанолом ; в неполярных растворителях растворяется плохо. Гидразин и большинство его производных токсичны.

Свойства

Термодинамически гидразин значительно менее устойчив, чем аммиак, так как связь N-N не очень прочна: разложение гидразина - экзотермическая реакция, протекающая в отсутствие катализаторов при 200-300 °С:

3 N 2 H 4 → 4 NH 3 + N 2

Переходные металлы (Co, Ni, Cu, Ag) катализируют разложение гидразина, при катализе платиной, родием и палладием основными продуктами разложения являются азот и водород:

N 2 H 4 → N 2 + 2 H 2

Благодаря наличию двух неподелённых пар электронов у атомов азота, гидразин способен к присоединению одного или двух ионов водорода. При присоединении одного протона получаются соединения гидразиния с зарядом 1+, двух протонов - гидразиния 2+, содержащие соответственно ионы N 2 H 5 + и N 2 H 6 2+ . Водные растворы гидразина обладают основными свойствами, но его основность значительно меньше, чем у аммиака:

N 2 H 4 + H 2 O → + + OH − (K b = 3,0·10 −6)

(для аммиака K b = 1,78·10 −5) Протонирование второй неподеленной пары электронов протекает ещё труднее:

H 2 O → 2+ + OH − (K b = 8,4·10 −16)

Известны соли гидразина - хлорид N 2 H 5 Cl, сульфат N 2 H 6 SO 4 и т. д. Иногда их формулы записывают N 2 H 4 · HCl, N 2 H 4 · H 2 SO 4 и т. д. и называют гидрохлорид гидразина, сульфат гидразина и т. д. Большинство таких солей растворимо в воде.

NH 3 + NaClO NH 2 Cl + NaOH NH 2 Cl + NH 3 N 2 H 4 · HCl,

реакция проводится при температуре 160 °C и давлении 2,5−3,0 МПа.

Синтез гидразина окислением мочевины гипохлоритом по механизму аналогичен синтезу аминов из амидов по Гофману:

H 2 NCONH 2 + NaOCl + 2 NaOH N 2 H 4 + H 2 O + NaCl + Na 2 CO 3 ,

реакция проводится при температуре ~100 °C и атмосферном давлении.

Применение

Гидразина сульфат применяется в случае таких заболеваний, как неоперабельные прогрессирующие распространенные формы, рецидивы и метастазы злокачественных опухолей - рак легкого (особенно немелкоклеточный), молочных желез, желудка, поджелудочной железы, гортани, эндометрия, шейки матки, десмоидный рак, саркома мягких тканей, фибросаркома, нейробластома, лимфогранулематоз, лимфосаркома (монотерапия или в составе полихимиотерапии).

Гидразин и его производные, такие как метилгидразин , несимметричный диметилгидразин и их смеси (аэрозин) широко распространены как ракетное горючее. Они могут быть использованы в паре с самыми разными окислителями, а некоторые и в качестве однокомпонентного топлива, в этом случае рабочим телом двигателя являются продукты разложения на катализаторе. Последнее удобно для маломощных двигателей.
Во время Второй мировой войны гидразин был применён в Германии на реактивных истребителях «Мессершмитт Ме-16З ».

Теоретические характеристики различных видов ракетного топлива, образованных гидразином с различными окислителями.

Окислитель
Окислитель Удельная тяга (Р1, с*) Температура сгорания °С Плотность топлива г/см³ Прирост скорости, ΔVид,25, м/с Весовое содерж.горючего %
Фтор 364,4 с °С 1,314 5197 м/с 31 %
Тетрафторгидразин 334,7 с °С 1,105 4346 м/с 23,5 %
ClF 3 294,6 с °С 1,507 4509 м/с 27 %
ClF 5 312,0 с °С 1,458 4697 м/с 26,93 %
Перхлорилфторид 295,3 с °С 1,327 4233 м/с 40 %
Фторид кислорода 345,9 с °С 1,263 4830 м/с 40 %
Кислород 312,9 с °С 1,065 3980 м/с 52 %
Перекись водорода 286,9 с °С 1,261 4003 м/с 33 %
N 2 O 4 291,1 с °С 1,217 3985 м/с 43 %
Азотная кислота 279,1 с °С 1,254 3883 м/с 40 %
  • Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

Гидразин также применяется в качестве топлива в гидразин-воздушных низкотемпературных топливных элементах.

Гидразин в Энциклопедическом словаре:
Гидразин — (диамид) — N2H4, бесцветная жидкость, tпл 1,5 .С, tкип 113,5 .С;неограниченно растворим в воде; взрывоопасен и ядовит. Применяют впроизводстве пластмасс, каучуков, инсектицидов, порообразователей, ВВ;горючий компонент ракетного топлива.

Значение слова Гидразин по словарю Брокгауза и Ефрона:
Гидразин (хим.), или диамид, NH2.(NH2). - При кипячении раствора триазоуксусной (см. это сл.) кислоты с слабой серной кислотой образуется (1887, Курциус) сернокислая соль гидразина и щавелевая кислота: C3H3N6.(CO2H)3 + 6H2O + 3H2SO4 = 3C2H2O4 + 3N2 Н 4.H2SO4. При разложении этой соли щелочью получается гидрат гидразина N 2H4. Н 2 O; он представляет малоподвижную жидкость со слабым, очень неприятным, запахом, сильно преломляющую свет, кипящую при 119°, уд. в. 1,0305. Гидрат обладает сильными щелочными свойствами, едким щелочным вкусом, пары его, при перегонке, разъедают даже стекло; он смешивается во всех пропорциях с водой и спиртом; застывает в кристаллическую массу при сильном охлаждении (ниже - 40°); при 100° в пустоте остается неразложенным, обладая частицей вышеприведенного состава. Окисьбария, ВаО, отнимает от гидрата воду, при чем выделяется свободный Г. N 2H4 [Его аналог есть жидкийфосфор,водород Р 2H4. По закону замещений (см. это сл.), если азот дает аммиак NH 3. то NH 2 есть одноатомный остаток,способныйзаменять водород. Если эта замена произойдет в самом аммиаке NH 3, то получится Г. NH 2(NH2). Δ.], который сильно дымить на воздухе, образуя с водяным паромснова гидрат. Г. обладает в высокой степени восстановительной способностью.Кроме вышеупомянутой соли с серной кислотой, трудно растворимой в воде при обыкновенной температуре, известна легкорастворимая (N 2H4)2 Н 2 SО 4. С галоидоводородными кислотами Г. дает соли такого состава: например для соляной кислоты - N 2H3.(HCl)4 и N 2H4.HCl, а для йодисто-водородной кроме того и более сложную (N 2H4)3(HJ)2. Все эти соли хорошо кристаллизуются. Подобногидроксиламину (см. это слово) Г. реагирует с альдегидами, кетонами, а также с кетонокислотами, образуя сложные производные. Г. получается еще из альдегидаммиака, послеобработки его азотистой кислотой и восстановления, и из продукта восстановления диазоуксусного эфира CHN 2.CO2(C2H5). Продукты замещения водорода гидразина углеводородными остатками, аналогичные аминам, получены раньше самого гидразина. Это одно и двузамещенные гидразины, NHR. (NH 2) и NR 2(NH2), где R = метилу (CН 3)2, этилу (C 2H5)1, фенилу (C 6H5)1 или другому углеводородному радикалу, эквивалентному одному атому водорода. Производные, содержащие жирные радикалы, получаются при восстановлении нитрозоаминов и нитрозомочевин (замещенных); ароматические производные - при восстановлении диазосоединений; фенилгидразин, например, C 6H5.NH.NH2 хорошо получается при действии смеси олова и соляной кислоты на хлористый диазобензол: C6H5.N2 Cl + 4Н = C 6H5.N2H3.HCl. Замещенные гидразины, подобно самому гидразину, обладают основными свойствами, образуя соли с одним или двумя (при жирных) эквивалентами кислоты. Они реагируют также с альдегидами и кетонами, образуя гидразоны, а с глюкозами (см. Глюкозы) и озазоны; для получения этих производных пользуются раствором смеси хлористо-водородной соли фенилгидразина с избытком уксуснокислого натрия (реактив Э. Фишера); в таком растворе фенилгидразин находится в свободном виде, потому что соляная к. превращается в хлористый натрий,освобождая уксусную кислоту, с которой фенилгидразин не соединяется. Многоразличные производные гидразина и замещенных гидразинов носят общее название гидразиновых производных. Симметрично замещенные гидразины называются гидразосоединениями , например гидразобензол (C 6H5)HNNH(C6H5); они получаются при действии восстановляющих веществ на азосоединения (см. это слово), а также из однозамещенных гидразинов: при действии хлортринитробензола на фенилгидразин образуется тринитрогидразобензол: (С 6H2)HN.NH2 + С 6H2(NO2)3Cl = (C6H5)HN. NH. + HCl. С. С. Колотов.Δ .

Гидразин (дополнение к статье) - см. также Нитрогуанидин и Нитрозоамины.

Определение слова «Гидразин» по БСЭ:
Гидразин — диамид, H2N-NH2, бесцветная, гигроскопичная, дымящая на воздухе жидкость; tкип 113,5°C, tпл 2°C, плотность 1,008 г/смі (при 20°C). Г. неограниченно растворим в воде и низших спиртах. Нерастворим в углеводородах и др. органических растворителях. Водные растворы Г. обладают основными свойствами (6/0603831.tif = 8,5· 10−7).
С кислотами образует соли гидразония, например N2H5Cl, N2H6Cl2. Г. характеризуется высокой диэлектрической проницаемостью (52,9 при 20°C) и способен растворятьмногие неорганические соли. Г. — эндотермическое соединение; теплота образования
ΔH°298 (ж) = 50,24 кдж/моль (12,05 ккал/моль). При нагревании до 200-300°C Г. разлагается на N2 и NH3. В присутствии Fe2O3 воспламеняется при комнатной температуре. С воздухом пары Г. при содержании 4,67% по объёму и выше образуют взрывоопасные смеси. Жидкий Г. не чувствителен к удару, трению и детонации. Токсичен; предельно допустимая концентрация в воздухе 0,0001 мг/л. Получают Г. окислением NH3 или мочевины гипохлоритом. Применяют в органическом синтезе, производстве пластмасс, резины, инсектицидов, взрывчатых веществ, как горючийкомпонент в жидких ракетных топливах. См. также Диметилгидразин.
Лит.: Одрит Л. и Огг Б., Химия гидразина, пер. с англ., М., 1954.
В. С. Лапик.

ГидраденитГидразин Гидразосоединения

Структурная формула

Молекулярная масса: 32.046

Гидразин - (диамид) H2N-NH2 - бесцветная, сильно гигроскопическая жидкость с неприятным запахом.

Молекула H4N2 состоит из двух групп NH2, повёрнутых друг относительно друга, что обусловливает полярность молекулы гидразина, μ = 0,62·10−29 Кл · м. Смешивается в любых соотношениях с водой, жидким аммиаком, этанолом; в неполярных растворителях растворяется плохо. Образует органические производные: алкилгидразины и арилгидразины.

Свойства

Термодинамически гидразин значительно менее устойчив, чем аммиак, так как связь N-N не очень прочна: разложение гидразина - экзотермическая реакция, протекающая в отсутствие катализаторов при 200-300 °С.

Переходные металлы (Co, Ni, Cu, Ag) катализируют разложение гидразина, при катализе платиной, родием и палладием основными продуктами разложения являются азот и водород. Благодаря наличию двух неподелённых пар электронов у атомов азота, гидразин способен к присоединению одного или двух ионов водорода. При присоединении одного протона получаются соединения гидразиния с зарядом 1+, двух протонов - гидразония с зарядом 2+, содержащие соответственно ионы N2H5+ и N2H62+.

Водные растворы гидразина обладают основными свойствами, но его основность значительно меньше, чем у аммиака. Известны соли гидразина - хлорид гидразиния N2H5Cl, сульфат гидразония N2H6SO4 и т. д. Иногда их формулы записывают N2H4 · HCl, N2H4 · H2SO4 и т.

Гидразин как оружие возмездия «сумрачного германского гения» не сработал

д. и называют гидрохлорид гидразина, сульфат гидразина и т. д. Большинство таких солей растворимо в воде. Соли гидразина бесцветны, почти все хорошо растворимы в воде. К числу важнейших относится сульфат гидразина N2H5 · H2SO4.

Гидразин как восстановитель

Гидразин - энергичный восстановитель.

В растворах гидразин обычно также окисляется до азота. Восстановить гидразин до аммиака можно только сильными восстановителями, такими, как Sn2+, Ti3+, водородом в момент выделения (Zn + HCl). Окисляется кислородом воздуха до азота, аммиака и воды. Известны многие органические производные гидразина.

Гидразин, а также гидразин-гидрат, гидразин-сульфат, гидразин-хлорид, широко применяются в качестве восстановителей золота, серебра, платиновых металлов из разбавленных растворов их солей. Медь в аналогичных условиях восстанавливается до закиси. В органическом синтезе гидразин применяется для восстановления карбонильной группы альдегидов и кетонов до метиленовой по Кижнеру-Вольфу (реакция Кижнера-Вольфа), реакция идёт через образование гидразонов, расщепляющихся затем под действием сильных оснований.

Обнаружение

Качественной реакцией на гидразин служит образование окрашенных гидразонов с некоторыми альдегидами, в частности - с p-диметиламинобензальдегидом.

Получение

Гидразин получают окислением аммиака NH3 или мочевины CO(NH2)2 гипохлоритом натрия NaClO (метод Рашига).

Реакция проводится при температуре 160 °C и давлении 2,5−3,0 МПа. Синтез гидразина окислением мочевины гипохлоритом по механизму аналогичен синтезу аминов из амидов по Гофману. Реакция проводится при температуре ~100 °C и атмосферном давлении.

Применение

Гидразин применяют в органическом синтезе, в производстве пластмасс, резины, инсектицидов, взрывчатых веществ, в качестве компонента ракетного топлива. Гидразина сульфат применяется в случае таких заболеваний, как неоперабельные прогрессирующие распространенные формы, рецидивы и метастазы злокачественных опухолей - рак легкого (особенно немелкоклеточный), молочных желез, желудка, поджелудочной железы, гортани, эндометрия, шейки матки, десмоидный рак, саркома мягких тканей, фибросаркома, нейробластома, лимфогранулематоз, лимфосаркома (монотерапия или в составе полихимиотерапии).

Они могут быть использованы в паре с самыми разными окислителями, а некоторые и в качестве однокомпонентного топлива, в этом случае рабочим телом двигателя являются продукты разложения на катализаторе. Последнее удобно для маломощных двигателей. Во время Второй мировой войны гидразин применялся в Германии в качестве одного из компонентов топлива для реактивных истребителей «Мессершмитт Ме-163» (C-Stoff, содержащий до 30 % гидрата гидразина) и ракет «Фау-2» (B-Stoff, 75 % гидразина).

  • Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс).

    Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

Жидкая смесь гидразина и нитрата аммония используется как мощное взрывчатое средство с нулевым кислородным балансом - астролита, который, однако, в настоящее время практического значения не имеет. Гидразин широко применяется в химической промышленности в качестве восстановителя кислорода, содержащегося в деминерализованной воде, применяемой для питания котлов (котельные установки, производства аммиака, слабой азотной кислоты и др.).

Токсичность

Гидразин и большинство его производных очень токсичны.

Небольшие концентрации гидразина вызывают раздражение глаз, дыхательных путей. При повышении концентрации начинается головокружение, головная боль и тошнота. Далее следуют судороги, токсический отёк лёгких, а за ними - кома и смерть. ПДК в воздухе рабочей зоны = 0,1 мг/м2. Относится к первому классу опасности.

Гидрази́н (диамид) H2N-NH2 - бесцветная, сильно гигроскопическая жидкость с неприятным запахом.

Молекула N2H4 состоит из двух групп NH2, повёрнутых друг относительно друга, что обусловливает полярность молекулы гидразина, μ = 0,62 Кл · м. Смешивается в любых соотношениях с водой, жидким аммиаком, этанолом; в неполярных растворителях растворяется плохо.

Образует органические производные: алкилгидразины и арилгидразины.
Был открыт в 1887 году Теодором Курциусом.

Свойства ==

Термодинамически гидразин значительно менее устойчив, чем аммиак, так как связь N-N не очень прочна: разложение гидразина - экзотермическая реакция, протекающая в отсутствие катализаторов при 200-300 °С:

Переходные металлы (Co, Ni, Cu, Ag) катализируют разложение гидразина, при катализе платиной, родием и палладием основными продуктами разложения являются азот и водород:

Благодаря наличию двух неподелённых пар электронов у атомов азота, гидразин способен к присоединению одного или двух ионов водорода.

При присоединении одного протона получаются соединения гидразиния с зарядом 1+, двух протонов - гидразония с зарядом 2+, содержащие соответственно ионы N2H5+ и N2H62+.

Водные растворы гидразина обладают основными свойствами, но его основность значительно меньше, чем у аммиака:

(для аммиака Kb = 1,78)

Протонирование второй неподеленной пары электронов протекает ещё труднее:

Известны соли гидразина - хлорид гидразиния N2H5Cl, сульфат гидразиния N2H6SO4 и т. д. Иногда их формулы записывают N2H4 · HCl, N2H4 · H2SO4 и т.

д. и называют гидрохлорид гидразина, сульфат гидразина и т. д. Большинство таких солей растворимо в воде.

Соли гидразина бесцветны, почти все хорошо растворимы в воде. К числу важнейших относится сульфат гидразина N2H4 · H2SO4.

Гидразин как восстановитель === Гидразин - энергичный восстановитель. В растворах гидразин обычно также окисляется до азота:

Восстановить гидразин до аммиака можно только сильными восстановителями, такими, как Sn2+, Ti3+, водородом в момент выделения (Zn + HCl):

Окисляется кислородом воздуха до азота, аммиака и воды.

Известны многие органические производные гидразина. Гидразин, а также гидразин-гидрат, гидразин-сульфат, гидразин-хлорид, широко применяются в качестве восстановителей золота, серебра, платиновых металлов из разбавленных растворов их солей.

Медь в аналогичных условиях восстанавливается до закиси.

В органическом синтезе гидразин применяется для восстановления карбонильной группы альдегидов и кетонов до метиленовой по Кижнеру-Вольфу (реакция Кижнера-Вольфа), реакция идёт через образование гидразонов, расщепляющихся затем под действием сильных оснований.

Обнаружение === Качественной реакцией на гидразин служит образование окрашенных гидразонов с некоторыми альдегидами, в частности - с p -диметиламинобензальдегидом.

Получение == Гидразин получают окислением аммиака NH3 или мочевины CO(NH2)2 гипохлоритом натрия NaClO (метод Рашига):

:: реакция проводится при температуре 160 °C и давлении 2,5−3,0 МПа.

Синтез гидразина окислением мочевины гипохлоритом по механизму аналогичен синтезу аминов из амидов по Гофману: :: реакция проводится при температуре ~100 °C и атмосферном давлении.

Применяется также метод Байера: ::

Применение == Гидразин применяют в органическом синтезе, в производстве пластмасс, резины, инсектицидов, взрывчатых веществ, в качестве компонента ракетного топлива.

Гидразина сульфат применяется в случае таких заболеваний, как неоперабельные прогрессирующие распространенные формы, рецидивы и метастазы злокачественных опухолей - рак лёгкого (особенно немелкоклеточный), молочных желез, желудка, поджелудочной железы, гортани, эндометрия, шейки матки, десмоидный рак, саркома мягких тканей, фибросаркома, нейробластома, лимфогранулематоз, лимфосаркома (монотерапия или в составе полихимиотерапии).

Гидразин также применяется в качестве топлива в гидразин-воздушных низкотемпературных топливных элементах.

Жидкая смесь гидразина и нитрата аммония используется как мощное взрывчатое средство с нулевым кислородным балансом - астролита, который, однако, в настоящее время практического значения не имеет.
Гидразин широко применяется в химической промышленности в качестве восстановителя кислорода, содержащегося в деминерализованной воде, применяемой для питания котлов (котельные установки, производства аммиака, слабой азотной кислоты и другое).

При этом протекает следующая химическая реакция: N2H4 + O2 = N2 + 2H2O.

Ракетное топливо === Во время Второй мировой войны гидразин применялся в Германии в качестве одного из компонентов топлива для реактивных истребителей «Мессершмитт Ме-163» (C-Stoff, содержащий до 30 % гидрата гидразина).

Гидразин и его производные (метилгидразин, несимметричный диметилгидразин и их смеси (аэрозин)) широко распространены как ракетное горючее.

Гидразин - токсичный, но широко востребованный реактив

Они могут быть использованы в паре с самыми разными окислителями, а некоторые и в качестве однокомпонентного топлива, в этом случае рабочим телом двигателя являются продукты разложения на катализаторе.

Последнее удобно для маломощных двигателей.

* Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

Токсичность == Гидразин и большинство его производных очень токсичны.

Небольшие концентрации гидразина вызывают раздражение глаз, дыхательных путей. При повышении концентрации начинается головокружение, головная боль и тошнота. Далее следуют судороги, токсический отёк лёгких, а за ними - кома и смерть. ПДК в воздухе рабочей зоны = 0,1 мг/м3. Относится к первому классу опасности.

Примечания ==

Texte soumis à la licence CC-BY-SA.

Source: Article https://ru.wikipedia.org/wiki/Гидразин de Wikipédia

Гидразин. Свойства, токсичность

Гидразин применяется в производстве лекарств, пластмасс, резин, инсектицидов, взрывчатых веществ, в качестве консерванта и как компонент ракетного топлива.

Физико-химические свойства.

Токсичность

Гидразин – бесцветная маслянистая жидкость с запахом аммиака. Летуч. Плотность пара в 1,1 раза выше плотности воздуха. Вещество хорошо растворяется в воде. Водные растворы обладают свойствами оснований.

Разлагается при нагревании. Гидразин и его производные (монометилгидразин и диметилгидразин) – легковоспламеняющиеся вещества; горят с образованием летучих высокотоксичных нитросоединений.

Слово гидразин

Летальная доза гидразина для грызунов при введении в желудок составляет около 60 мг/кг, диметилгидразина — 33 мг/кг. При ингаляции паров в течение 4 часов, смертельной является концентрация гидразина 0,32 г/м3, диметилгидразина — 0,11 г/м3 (в 200 — 500 раз менее токсичны, чем зарин).

Токсикокинетика

В организм гидразин и его алкильные производные в виде пара и аэрозоля проникает ингаляционно и через кожу, в виде жидкости – через кожные покровы и при приеме внутрь.

Проникновению веществ через кожу способствует повреждающее действие токсикантов на покровные ткани. С кровью распределяются в органах и тканях, легко проникают через ГЭБ. Элиминация гидразина из организма частично осуществляется за счет выделения с мочой в неизмененном виде, частично за счет метаболизма. Основной путь метаболических превращений – конъюгация с эндогенным уридином, фосфатом, ацетатом при участии соответствующих трансфераз (реакции конъюгации) и биологическое окисление, активируемое микросомальными цитохром-Р450-зависимыми оксидазами смешанной функции, до азота, диимида и диазена.

Пораженные, подвергшиеся санитарной обработке, не представляют опасности для окружающих.

Основные проявления интоксикации

Пары гидразина вызывают сильное раздражение слизистых оболочек глаз, дыхательных путей. При тяжелых поражения возможно развитие токсического отека легких, токсической пневмонии. Жидкий гидразин (в эпицентре аварии) при попадании на кожу или глаза вызывает химический ожог ткани и сопутствующие этому общие реакции организма.

Местное действие на покровные ткани диметилгидразина выражено значительно слабее.

При резорбции гидразина к проявлениям местного действия токсикантов присоединяются признаки поражения ЦНС, крови, печени и почек. Симптоматика отравления развивается спустя 30-90 мин от начала воздействия.

При легкой интоксикации (наиболее вероятная форма поражения в зоне химического заражения) появляются беспокойство, возбуждение, чувство страха, бессонница.

Нарушение работоспособности в течение суток и более.

При поступлении в организм в дозах, близких к смертельным, вещества вызывают тошноту, рвоту, нарушение сознания, клонико-тонические судороги, приступы которых чередуются с периодами ремиссии.

У пострадавших развивается коматозное состояние на фоне нарушений функций сердечно-сосудистой системы (брадикардия, коллапс). По выходе из комы наблюдается психоз с бредом, слуховыми и зрительными галлюцинациями. Состояние психоза может продолжаться в течение нескольких дней.

Характерным проявлением интоксикации являются метгемоглобинемия, гемолиз (метгемоглобинообразование более характерно для арильных производных гидразина, например фенилгидразина).

Максимум снижения содержания эритроцитов в крови отмечается к 10-м суткам.

Механизм токсического действия

Основными механизмами, лежащими в основе токсического действия гидразина и его производных на ЦНС, являются:

1) снижение содержания пиридоксальфосфата в тканях мозга;

2) инактивация ферментов, кофактором которых является пиридоксальфосфат и, в частности, энзимов, участвующих в метаболизме ГАМК;

3) снижение содержания ГАМК и, как следствие этого, подавление тормозных процессов в ЦНС;

4) снижение активности моноаминоксидазы (МАО) и повышение содержания биогенных аминов (норадреналин, дофамина, серотонина) в ЦНС.

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия:

— использование индивидуальных технических средств защиты (средства защиты кожи и органов дыхания) в зоне химического заражения;

— участие медицинской службы в проведении химической разведки в районе расположения войск; проведение экспертизы воды и продовольствия на зараженность ОВТВ;

— запрет на использование воды и продовольствия из непроверенных источников;

— обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

— проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

— применение антидотов и средств патогенетической и симптоматической терапии состояний, угрожающих жизни, здоровью, дееспособности, в ходе оказания первой (само-взаимопомощь), доврачебной и первой врачебной (элементы) помощи пострадавшим.

— подготовка и проведение эвакуации

Средства медицинской защиты

При попадании гидразина на поверхность кожи, в глаза первая помощь оказывается в соответствии с общими принципами оказания помощи отравленным.

В отношении легко отравленных осуществляются мероприятия, проводимые при оказании помощи пораженным и другими веществами раздражающего действия. При тяжелых поражениях кожи и глаз мероприятия аналогичны, проводимым при отравлении ипритом.

При ингаляционном поражении мероприятия должны быть направлены на профилактику, а в случае необходимости – на раннее лечение токсического отека легких.

В процессе целенаправленного поиска антидотов резорбтивного действия гидразина испытаны вещества, обладающие химическим, биохимическим и физиологическим антагонизмом к токсиканту.

Биохимическим антагонистом гидразина является пиридоксин.

Людям, отравленным гидразинами, пиридоксин (витамин В6) с лечебной целью вводят в форме 5% раствора в дозе 25 мг/кг (1/4 дозы в/в, 3/4 — в/м); при необходимости инъекцию повторяют через каждые 2 ч.

Эффективными оказались препараты из группы производных бензодиазепина. Эти вещества потенцируют действия ГАМК в ГАМК-эргических синапсах центральной нервной системы. Диазепам (седуксен) в дозе 5-10 мг/кг в 100% случаев предотвращает острую гибель экспериментальных животных, отравленных гидразином в смертельной дозе.

Производные барбитуровой кислоты (фенобарбитал) и оксазолидиндионы (триметадион) также подавляют судороги, вызываемые производными гидразина.

Дибензодиазепины (клозапин) снижают выраженность психотических реакций, развивающихся при легкой и средней степени тяжести отравления гидразином.

Вещества малотоксичны, обладают слабым седативным и гипотензивным действием. Клозапин назначают в дозе 25 — 100 мг (таблетки).

Из указанных препаратов достаточной эффективностью, переносимостью и удобством применения в полевых условиях отличаются диазепам и клозапин, которые и могут быть рекомендованы как средства медицинской защиты: клозапин — при возбуждении, чувстве страха; диазепам — при появлении судорогстроением, но и особенностями токсического действия. Вещества одной группы при тяжелых интоксикациях вызывают развитие судорожного синдрома, комы и гибели пострадавшего, как правило, от остановки дыхания и сердечной деятельности на фоне истощения энергетических ресурсов организма.

Другие – первично вызывают паралич произвольной мускулатуры, в том числе и дыхательной, и гибели от асфиксии.

Гидразин гидрат (гидразин диамид)

Продажа

АО «Реахим» предлагает самые низкие цены на реагенты из каталога. У нас вы можете купить гидразин гидрат по цене производителя и получить в кратчайшие сроки. Мы гарантируем чистоту гидразин гидрата не ниже 98%, действующий срок гарантии, точную доставку в оговоренные сроки.

Чтобы оформить заказ на гидразин гидрат (1:1) используйте форму заказа на сайте.

Общее определение

Гидразин Гидрат (1:1) с регистрационным номером CAS: 7803-57-8 представляет собой бесцветную дымящуюся жидкость со слабым запахом аммиака. Имеет и другие регистрационные номера: 65209-65-6, 65492-74-2, 79785-97-0.

Химически стабильное вещество, имеет целый ряд несовместимостей.

Применение

Вещество гидразин гидрат применяется в производстве и используется в лабораторных условиях:

  • в качестве восстановителя для гидрата гидразина;
  • в медицине;
  • входит в состав пестицидов, красителей, пенообразователей;
  • служит антиоксидантом материалов;
  • для производства металлов высокой чистоты;
  • для изготовления синтетических волокон;
  • редко – для изготовления ракет и взрывчатых веществ.

Получение

Есть несколько способов получения гидрата гидразина.

Например, его можно приготовить с помощью мочевины: смешать гипохлорит натрия и гидроксид натрия в определенном соотношении, добавить смесь мочевины и небольшое количество перманганата калия при перемешивании. Затем пропустить пар в реакторе при 103-104°С.

После начала реакции окисления 40% реактива получается путем фракционной перегонки, 80% путем дегидратации с каустической содой – в вакууме.

NH2ONH2 + NaClO + 2NaOH → N2H4·H2O + NaCl + Na2CO3

Идентификация

Название: Гидразин Гидрат / Hydrazine hydrate
Синонимы: Гидразин диамид / Nitrogen hydride; Hydrazine hydroxid; Hydrazine, monohydrate; Hydrazinium hydroxide.
Формула: H4N2·H2O / H6N2O
ГОСТ 5832-76 (не действует)
CAS: 7803-57-8

Физические данные

Физическое состояние: дымящаяся жидкость
Цвет: белый, бесцветный
Форма: кристаллы
Запах: слабый аммиачный
Молекулярная масса: 50.06
Температура кипения: 113.5°C при 760 мм рт.ст.
Температура плавления: 51.5°C
Давление пара: 20,7 мм рт.ст.

при 25°С
Плотность: 1.032 г/см3
Растворимость: смешивается со спиртами, немного с углеводородами, не растворим в хлороформе и эфире
Чистота: не ниже 98%

Пожар и взрыв

Температура вспышки: 75ºС

Материал не горит и сгорает с трудом. Для тушения пожара, рядом или в эпицентре которого расположен гидразин гидрат, используется вода.

Может воспламеняться от тепла, искр или пламенны.

Пары могут образовывать с воздухом взрывоопасные смеси.

Влияние на организм

Опасное вещество – гидразин гидрат оказывает негативное влияние на организм: вызывает ожоги, рак, аллергию при контакте с кожей. Пары реагента раздражают слизистые оболочки, носовую полость, горло, верхние дыхательные пути.

Стабильность

Стабильная жидкость.

Несовместимость: окислители, оксиды тяжелых металлов, обезвоживающие агенты, щелочные металлы, ржавчина, соли серебра.

Остаток от обезвоженного гидразина с барием или оксидом кальция разлагается с выделением тепла в дневное время и, наконец, взрывается.

Разлив и очищение

Крайне токсично для водных организмов, может вызывать долгосрочные неблагоприятные изменения в водной среде.

Удалять гидразин со сточных вод можно с помощью активированного угля и меди ионных катализаторов.

В случае разлива удалить источники возгорания, накрыть место разлива абсорбирующий материалом, собрать в контейнер для утилизации.

Утилизировать необходимо по протоколу утилизации опасных отходов.

Профилактика

Избегать попадания на кожу и в глаза, не вдыхать пары, избегать прямого контакта, не трогать сломанные контейнера.

Смывать водой или мылом с водой, но не в канализацию.

Безопасность

Символ опасности: T, N.

Коды риска:

  • 20/21/22 – Опасно при вдыхании, попадании на кожу и проглатывании;
  • 45 – Может вызвать рак;
  • 34 – Вызывает ожоги;
  • 43 – Может вызвать сенсибилизацию при попадании на кожу;
  • 51/53 – Токсично для водных организмов, может вызывать продолжительные неблагоприятные изменения в водной среде;
  • 50/53 – Очень токсично для водных организмов, может вызывать продолжительные неблагоприятные изменения в водной среде;
  • 23/24/25 – Токсично при вдыхании, попадании на кожу и проглатывании;
  • 10 – Огнеопасно.

Коды безопасности:

  • 45 – В случае аварии или при плохом самочувствии немедленно обратиться за медицинской помощью (по возможности предъявить этикетку материала);
  • 53 – Избегать контакта - перед использованием получить специальные инструкции;
  • 60 – Данный материал и его тару следует утилизировать как опасные отходы;
  • 61 – Не допускать попадания в окружающую среду.

    Смотрите специальные инструкции/паспорт безопасности материала.

Защитное оборудование и одежда

Защита включает респиратор, химическую защиту, рекомендованную производителем.

Хранение

Закрытые контейнера могут взрываться, поэтому их следует держать удаленно от источников света и тепла.

Упаковка и транспортировка

Ограничений на транспортировку виноградной кислоты по морю, воздуху или суше нет. Требует обязательной маркировки: класс опасности – 8.

Группа упаковки: II.

Упаковка: 5 г / 100 г / 500 г / 2 кг в стеклянной бутыли / 200 кг в бочках.

Гарантийный срок

3 года от даты изготовления