Урок "уравнение касательной к графику функции". Презентация на тему "уравнение касательной к графику функции" Урок по теме касательная к графику функции

Уроки 70-71. Уравнение касательной к графику функции

09.07.2015 5132 0

Цель: получить уравнение касательной к графику функции.

I. Сообщение темы и цели уроков

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (тест).

Вариант 1

1. Найдите производную функции у = 3х4 – 2 cos x .

Ответ:

в точке х = π.

Ответ:

3. Решите уравнение y ’(x ) = 0, если

Ответ:

Вариант 2

1. Найдите производную функции у = 5хб + 3 sin x .

Ответ:

2. Вычислите значение производной функции в точке х = π.

Ответ:

3. Решите уравнение y ’(х) = 0, если

Ответ:

III. Изучение нового материала

Наконец перейдем к заключительному этапу изучения производной и рассмотрим на оставшихся занятиях применение производной. На этом занятии обсудим касательную к графику функции.

Понятие касательной уже рассматривалось ранее. Было показано, что график дифференцируемой в точке а функции f (х) вблизи а практически не отличается от графика касательной, а значит, он близок к секущей, проходящей через точки (а; f (а)) и (а + Δх; f (а + Δх)). Любая из таких секущих проходит через точку М(а; f (а)). Чтобы написать уравнение касательной, надо задать ее угловой коэффициент. Угловой коэффициент секущей Δ f /Δ x при Δх → 0 стремится к числу f "(а), которое является угловым коэффициентом касательной. Поэтому говорят, что касательная есть предельное положение секущей при Δх → 0.

Теперь получим уравнение касательной к графику функции f (х). Так как касательная является прямой и ее угловой коэффициент f "(а), то можно записать ее уравнение у = f "(a ) · x + b . Найдем коэффициент b из условия, что касательная проходит через точку М(а; f (а)). Подставим координаты этой точки в уравнение касательной и получим: f (а) = f "(a ) · a + b , откуда b = f (а) - f "(а) · а. Теперь подставим найденное значение b в уравнение касательной и получим: или Это и есть уравнение касательной. Обсудим применение уравнения касательной.

Пример 1

Под каким углом синусоида пересекает ось абсцисс в начале координат?

Угол, под которым график данной функции пересекает ось абсцисс, равен углу наклона а касательной, проведенной к графику функции f (x ) в этой точке. Найдем производную: Учитывая геометрический смысл производной, имеем: и a = 60°.

Пример 2

Напишем уравнение касательной графику функции f (х) = -х2 + 4х в точке a = 1.

f "(х) и самой функции f (x ) в точке a = 1 и получим: f "(a ) = f "(1) = -2 · 1 + 4 = 2 и f (a ) = f (1) = -12 + 4 · 1 = 3. Подставим эти величины в уравнение касательной. Имеем: у = 2(х - 1) + 3 или у = 2х + 1.

Для наглядности на рисунке приведены график функции f (x ) и касательная к этой функции. Касание происходит в точке M (1; 3).

На основе примеров 1 и 2 можно сформулировать алгоритм получения уравнения касательной к графику функции у = f (x ):

1) обозначить абсциссу точки касания буквой а;

2) вычислить f (а);

3) найти f "(x ) и вычислить f "(a );

4) подставить найденные числа a , f (a ), f "(a ) в формулу y = f ’(a )(x - a ) + f (a ).

Заметим, что изначально точка а может быть неизвестна и ее приходится искать из условий задачи. Тогда в алгоритме в п. 2 и 3 слово «вычислить» надо заменить словом «записать» (что иллюстрирует пример 3).

В примере 2 абсцисса а точки касания была задана напрямую. Во многих случаях точка касания определяется различными дополнительными условиями.

Пример 3

Напишем уравнения касательных, проведенных из точки A (0; 4) к графику функции f (x ) = - x 2 + 2х.

Легко проверить, что точка А не лежит на параболе. Вместе с тем неизвестны точки касания параболы и касательных, поэтому для нахождения этих точек будет использовано дополнительное условие - прохождение касательных через точку А.

Предположим, что касание происходит в точке а. Найдем производную функции: Вычислим значения производной f "(x ) и самой функции f (х) в точке касания а и получим: f ’(а) = -2а + 2 и f (a ) = -а2 + 2а. Подставим эти величины в уравнение касательной. Имеем: или Это уравнение касательной.

Запишем условие прохождения касательной через точку А, подставив координаты этой точки. Получим: 4 или 4 = а2, откуда а = ±2. Таким образом, касание происходит в двух точках В(-2; -8) и С(2; 0). Поэтому таких касательных будет две. Найдем их уравнения. Подставим значения а = ±2 в уравнение касательной. Получим: при a = 2 или ух = -2х + 4; при a = -2 или у2 = 6х + 4. Итак, уравнения касательных у1 = -2х + 4 и у2 = 6х + 4.

Пример 4

Найдем угол между касательными, используя условия предыдущей задачи.

Проведенные касательные у1 = -2х + 4 и у2 = 6х + 4 составляют с положительным направлением оси абсцисс углы а1 и а2 (причем tg a 1 = -2 и tg a 2 = 6) и между собой угол φ = a 1 - а2. Найдем, используя известную формулу, откуда φ = arctg 8/11.

Пример 5

Напишем уравнение касательной к графику функции параллельной прямой у = -х + 2.

Две прямые параллельны друг другу, если они имеют равные угловые коэффициенты. Угловой коэффициент прямой у = -х + 2 равен -1, угловой коэффициент искомой касательной равен f ’(a ), где a - абсцисса точки касания. Поэтому для определения а имеем дополнительное условие f ’(a ) = -1.

Используя формулу для производной частного функций, найдем производную: Найдем значение производной в точке a и получим:

Получим уравнение или (а - 2)2 = 4, или а - 2 = ±2, откуда а = 4 и а = 0. Таким образом, существуют две касательные, удовлетворяющие условию задачи. Подставим значения а = 4 и а = 0 в уравнение касательной у = f ’(a )(x - а) + f (а). При а = 4 имеем: и касательная у1 = -(х - 4) + 3 или у1 = -х + 7. При а = 0 получим: и касательная у2 = -(х - 0) – 1 или у2 = -х - 1. Итак, уравнения касательных у1 = -х + 7 и у2 = -х - 1.

Заметим, что если f "(a ) не существует, то касательная или не существует (как у функции f (х) = |х| в точке (0; 0) - рис. а, или вертикальна (как у функции в точке (0; 0) - рис. б.


Итак, существование производной функции f (х) в точке а эквивалентно существованию невертикальной касательной в точке (а; f (а)) графика. При этом угловой коэффициент касательной равен f "(а). В этом заключается геометрический смысл производной.

Понятие производной позволяет проводить приближенные вычисления. Уже неоднократно отмечалось, что при Δх → 0 значения функции f (x ) и касательной к ней у(х) практически совпадают. Поэтому при Δх 0 поведение функции f (х) в окрестности точки х0 приближенно можно описать формулой (фактически уравнение касательной). Эта формула с успехом используется для приближенных вычислений.

Пример 6

Вычислим значение функции в точке х = 2,03.

Найдем производную данной функции: f "(х) = 12х2 - 4х + 3. Будем считать, что х = а + Δх, где а = 2 и Δх = 0,03. Вычислим значения функции и ее производной в точке а и получим: и Теперь определим значение функции в заданной точке х = 2,03. Имеем:

Разумеется, приведенную формулу удобно использовать, если значения f (а) и f "(a ) легко вычислить.

Пример 7

Вычислим

Рассмотрим функцию Найдем производную: Будем считать, что х = а + Δх, где а = 8 и Δх = 0,03. Вычислим значения функции и ее производной в точке а и получим: Теперь определим значение функции в заданной точке х = 8,03. Имеем:

Пример 8

Обобщим полученный результат. Рассмотрим степенную функцию f (х) = х n и будем считать, что х = а + Δх и Δх → 0. Найдем f "(х) = n х n -1 и вычислим значения функции и ее производной в точке а, получим: f (a ) = an и f ’(a ) = nan -1 . Теперь имеем формулу f (х) = а n + nan -1 Δх. Применим ее для вычисления числа 0,98-20. Будем считать, что a = 1, Δх = -0,02 и n = -20. Тогда получим:

Разумеется, приведенную формулу можно использовать и для любых других функций, в частности тригонометрических.

Пример 9

Вычислим tg 48°.

Рассмотрим функцию f (x ) = tg x и найдем производную: Будем считать, что х = a + Δ х, где a = 45° = π/4 и (еще раз обратим внимание на то, что в тригонометрии углы обычно измеряют в радианах). Найдем значения функции и ее производной в точке а и получим: Теперь вычислим (учтено, что π = 3,14).

IV. Контрольные вопросы

1. Уравнение касательной к графику функции.

2. Алгоритм выведения уравнения касательной.

3. Геометрический смысл производной.

4. Применение уравнения касательной для приближенных вычислений.

V. Задание на уроках

§ 29, № 1 (а); 2 (б); 5 (а, б); 6 (в, г); 9 (а); 10 (б); 12 (г); 14 (а); 17; 21 (а); 22 (а, в); 24 (а, б); 25 (а); 26.

VI. Задание на дом

§ 29, № 1 (б); 2 (в); 5 (в, г); 6 (а, б); 9 (б); 10 (а); 12 (б); 14 (б); 18; 21 (в); 22 (б, г); 24 (в, г); 25 (б); 27.

VII. Творческие задания

1. В каких точках х касательные к графикам функций параллельны?

Ответ: х = -1, х = 3.

2. При каких х касательные к графикам функций у = 3 cos 5 x - 7 и у = 5 cos 3 x + 4 параллельны?

Ответ:

3. Под какими углами пересекаются кривые у = х2 и

Ответ: π/2 и arctg 3/5.

4. Под какими углами пересекаются кривые у = cos x и у = sin х?

Ответ:

5. К параболе у = 4 - х2 в точке с абсциссой х = 1 проведена касательная. Найдите точку пересечения этой касательной с осью ординат.

Ответ: (0; 5).

6. К параболе у = 4х - х2 в точке с абсциссой х = 3 проведена касательная. Найдите точку пересечения этой касательной с осью абсцисс.

Ответ: (9/2; 0).

7. Найдите угол между двумя касательными, проведенными из точки (0; -2) к параболе у = х2.

Ответ:

8. К графику функции у = 3х2 + 3х + 2 проведены касательные с угловыми коэффициентами k 1 = 0 и k 2 = 15. Напишите уравнение прямой, проходящей через точки касания.

Ответ: у = 12х - 4.

9. Найдите уравнения прямых, касающихся одновременно парабол у = х2 + х - 2 и у = -х2 + 7х - 11.

Ответ: у = 7х - 11 и у = х - 2.

10. Напишите уравнение общей касательной к параболам у = -3х2 + 4х + 4 и у = -3х2 + 16х - 20.

Ответ: у = -2х + 7.

11. Касательная к графику функции у = х2 - 4х - 3 проведена в точке х = 0. Найдите площадь треугольника, образованного касательной и осями координат.

Ответ: 9/8.

12. Найдите площадь треугольника, ограниченного осями координат и касательной к графику функции в точке х = 2.

Ответ: 1.

VIII. Подведение итогов уроков

Класс: 10

Презентация к уроку























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

  1. Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его для конкретных функций.
  2. Развивать логическое мышление, математическую речь.
  3. Воспитывать волю и упорство для достижения конечных результатов.

Оборудование: интерактивная доска, компьютер.

План урока

I. Организационный момент

Проверка готовности учащихся к уроку. Сообщение темы урока и целей.

II. Актуализация знаний.

(Вспомнить с учащимися геометрическое определение касательной к графику функции. Привести примеры, показывающие, что данное утверждение не полно.)

Вспомним, что же такое касательная?

“Касательная – это прямая, имеющая с данной кривой одну общую точку”. (Слайд № 2)

Обсуждение правильности данного определения. (После обсуждения, учащиеся приходят к выводу, что данное определение неверно.) Для наглядного доказательства их умозаключения приводим следующий пример.

Рассмотрим пример. (Слайд № 3)

Пусть дана парабола и две прямые , имеющая с данной параболой одну общую точку М (1;1). Проводится обсуждение, почему первая прямая не является к данной параболе касательной (Рис. 1), а вторая является (Рис.2).

На данном уроке, мы с вами должны выяснить, что же такое касательная к графику функции в точке, как составить уравнение касательной?

Рассмотреть основные задачи на составление уравнения касательной.

Для этого, вспомнить общий вид уравнения прямой, условия параллельности прямых, определение производной и правила дифференцирования. (Слайд № 4)

III. Подготовительная работа к изучению нового материала.

  1. Сформулировать определение производной. (Слайд № 5)
  2. Заполнить таблицу произвольных элементарных функций. (Слайд № 6)
  3. Вспомнить правила дифференцирования. (Слайд № 7)
  4. Какие из указанных прямых параллельны и почему? (Убедиться наглядно) (Слайд №8)

IV Изучение нового материала.

Чтобы задать уравнение прямой на плоскости нам достаточно знать угловой коэффициент и координаты одной точки.

Пусть дан график функции . На нем выбрана точка , в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

Дадим аргументу приращение и рассмотрим на графике (Рис. 3) точку P с абциссой . Угловой коэффициент секущей MP, т.е. тангенс угла между секущей и осью x, вычисляется по формуле .

Если мы теперь устремим к нулю, то точка Р начнет приближаться по кривой к точке М. Касательную мы охарактеризовали как предельное положение секущей при этом приближении. Значит, естественно считать, что угловой коэффициент касательной будет вычисляться по формуле .

Следовательно, .

Если к графику функции y = f (x) в точке х = а можно провести касательную, непараллельную оси у , то выражает угловой коэффициент касательной. (Слайд № 10)

Или по другому. Производная в точке х = а равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке .

Это и есть геометрический смысл производной. (Слайд № 11)

Причем, если:

Выясним общий вид уравнения касательной.

Пусть, прямая задана уравнением . Мы знаем, что . Для вычисления m воспользуемся тем, что прямая проходит через точку . Подставим в уравнение. Получим , т.е. . Подставим найденные значения k и m в уравнение прямой:

– уравнение касательной к графику функции. (Слайд № 12)

Рассмотрим примеры:

Составим уравнение касательной:

(Слайд № 14)

Решая эти примеры мы воспользовались очень простым алгоритмом, который заключается в следующем: (Слайд № 15)

Рассмотрим типичные задания и их решение.

№1 Составить уравнение касательной к графику функции в точке .

(Слайд № 16)

Решение. Воспользуемся алгоритмом, учитывая, что в данном примере .

2)

3) ;

4) Подставим найденные числа ,, в формулу.

№2 К графику функции провести касательную так, чтобы она была параллельна прямой . (Слайд № 17)

Решение. Уточним формулировку задачи. Требование “провести касательную” обычно означает “составить уравнение касательной”. Воспользуемся алгоритмом составления касательной, учитывая, что в данном примере .

Искомая касательная должна быть параллельна прямой . Две прямые параллельны, тогда и только тогда, когда равны их угловые коэффициенты. Значит угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: .Но . Следовательно: ; ., т.е.

V. Решение задач.

1. Решение задач на готовых чертежах (Слайд № 18 и Слайд № 19)

2. Решение задач из учебника: № 29.3 (а,в), № 29.12 (б,г), № 29.18, № 29.23 (а) (Слайд № 20)

VI. Подведение итогов.

1. Ответьте на вопросы:

  • Что называется касательной к графику функции в точке?
  • В чем заключается геометрический смысл производной?
  • Сформулируйте алгоритм нахождения уравнения касательной?

2. В чем были трудности на уроке, какие моменты урока наиболее понравились?

3. Выставление отметок.

VII. Комментарии к домашней работе

№ 29.3 (б,г), № 29.12 (а,в), № 29.19, № 29.23 (б) (Слайд №22)

Литература. (Слайд 23)

  1. Алгебра и начала математического анализа: Учеб. Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009.
  2. Алгебра и начала математического анализа: Задачник, Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009.
  3. Алгебра и начала анализа. Самостоятельные и контрольные работы для 10-11 классов. / Ершова А.П., Голобородько В.В. – М.: ИЛЕКСА, 2010.
  4. ЕГЭ 2010. Математика. Задача В8. Рабочая тетрадь / Под редакцией А.Л.Семенова и И.В.Ященко – M.: Издательство МЦНМО, 2010.

Разделы: Математика

Цели.

  • Обобщить и систематизировать правила дифференциирования;
  • Повторить алгоритм построение касательной к графику функции, схему исследования функции;
  • Решение задач на применение наибольшего и наименьшего значения функции.

Оборудование. Плакат “Производная. Правила вычисления производных. Применения производной”.

Ход урока

По картам у учащихся повторение теоретического материала.

1. Дайте определение производной функции в точке. Что называется дифференциированием? Какую функцию называют дифференциируемой в точке?

(Производной функции f в точке х называется число, к которому стремится отношение

Функцию, имеющую производную в точке х 0 , называют дифференциируемой в этой точке. Нахождение производной f называется дифференциированием.)

2. Сформулируйте правила нахождения производной.

(1. Производная суммы (u + v)"=u"+v";
2. О постоянном множителе (Cu)"=Cu";
3. Производная произведения (uv)"=u"v+uv";
4. Производная дроби (u/v)"=(u"v-uv")/v 2 ;
5. Производная степенной функции (x n)"=nx n+1 .)

3. Чему равны производные следующих функций:

4. Как найти производную сложной функции?

(Надо последовательно представить ее в виде элементарных функций и взять производную по известным правилам).

5. Чему равны производные следующих функций:

6. В чем заключается геометрический смысл производной?

(Существование производной в точке эквивалентно существованию невертикальной касательной в точке (х 0 ,f(x 0)) графика функции, причем угловой коэффициент этой касательной равен f "(x 0)).

7. Какой вид имеет уравнение касательной к графику функции в точке (x 0 ,f(x 0))?

(Уравнение касательной имеет вид у=f(x 0)+f"(x 0)(x-х 0))

8. Сформулируете алгоритм построения графика функции с помощью производной.

(1. Найти ООФ.
2. Исследовать на четность.
3. Исследовать на периодичность.
4. Найти точки пересечения графика с осями координат.
5. Найти производную функции и ее критические точки.
6. Найти промежутки монотонности и экстремумы функции.
7. Построить таблицу по результатам исследования.
8. Построить график функции.)

9. Сформулировать теоремы, с помощью которых модно построить график функции.

(1. Признак возрастания (убывания).
2. Необходимый признак экстремума.
3. Признак максимума (минимума).)

10. Какие формулы существуют для приближенных вычислений функций?

Индивидуальная работа.

Уровень А (три варианта), уровень Б (один вариант).

Уровень А.

Вариант 1.

1. Запишите уравнение касательной к графику функции

f(x)=(x -1) 2 (x -3) 3 параллельной прямой у=5-24х.

2. Число 18 педставьте в виде суммы трех положительных слагаемых так, чтобы одно слагаемое было в два раза больше другого, а произведение всех трех слагаемых было наибольшим.

4. Найдите промежутки возрастания и убывания функции f(x)=(x-1) e х+1 .

Вариант 2.

1. Под каким углом к оси абсцисс наклонена касательная к графику функции f(x)=0,x 2 +x-1,5 в точке с абсциссой х 0 = - 2? Напишите уравнение этой касательной и выполните рисунок к этой задаче.

2. Как в В. 1.

3. Найдите производную функции:

Уровень Б.

1. Найдите производную функции:

а) f(x) = e -5х;
б) f(x) = log 3 (2x 2 -3x+1).

2. Напишите уравение касательной к графику функции в точке с абсциссой х 0 , если f(x)=e -х, х 0 = 1.

3. Найдите промежутки возрастания и убывания функции f(x)=x·e 2х.

Итог урока.

Проверяется работа, выставляется отметка за теорию и практику.

Домашнее задание дается индивидуально:

а)повторить производные тригонометрических функций;
б)метод интервалов;
в)механический смысл производной.

2. А: №138, №142, Б: №137(а,б), №140(а).

3. Возмите производную функций:

а) f(x)=x 4 -3x 2 -7;
б) f(x)=4x 3 -6x;
в) f(x)=-2sin(2x-4);
г) f(x)=cos(2x-4).

4. Назовите схему исследования функции.

Видеоурок «Уравнение касательной к графику функции» демонстрирует учебный материал для освоения темы. В ходе видеоурока представлен теоретический материал, необходимый для формирования понятия об уравнении касательной к графику функции в данной точке, алгоритм нахождения такой касательной, описаны примеры решения задач с использованием изученного теоретического материала.

В видеоуроке используются методы, улучшающие наглядность материала. В представлении вставлены рисунки, схемы, даются важные голосовые комментарии, применяется анимация, выделение цветом и другими инструментами.

Видеоурок начинается с представления темы урока и изображения касательной к графику некоторой функции y=f(x) в точке M(a;f(a)). Известно, что угловой коэффициент касательной, построенной к графику в данной точке, равен производной функции f΄(a) в данной точке. Также из курса алгебры известно уравнение прямой y=kx+m. Схематично представлено решение задачи нахождения уравнения касательной в точке, которая сводится к нахождению коэффициентов k, m. Зная координаты точки, принадлежащей графику функции, можем найти m, подставив значение координат в уравнение касательной f(a)=ka+m. Из него находим m=f(a)-ka. Таким образом, зная значение производной в данной точке и координаты точки, можно представить уравнение касательной таким образом y=f(a)+f΄(a)(x-a).

Далее рассматривается пример составления уравнения касательной, следуя схеме. Дана функция y=x 2 , x=-2. Приняв а=-2, находим значение функции в данной точке f(a)= f(-2)=(-2) 2 =4. Определяем производную функции f΄(х)=2х. В данной точке производная равна f΄(a)= f΄(-2)=2·(-2)=-4. Для составления уравнения найдены все коэффициенты а=-2, f(a)=4, f΄(a)=-4, поэтому уравнение касательной у=4+(-4)(х+2). Упростив уравнение, получаем у=-4-4х.

В следующем примере предлагается составить уравнение касательной в начале координат к графику функции y=tgx. В данной точке а=0, f(0)=0, f΄(х)=1/cos 2 x, f΄(0)=1. Таким образом, уравнение касательной выглядит у=х.

В качестве обобщения процесс составления уравнения касательной к графику функции в некоторой точке оформляется в виде алгоритма, состоящего из 4 шагов:

  • Вводится обозначение а абсциссы точки касания;
  • Вычисляется f(a);
  • Определяется f΄(х) и вычисляется f΄(a). В формулу уравнения касательной y=f(a)+f΄(a)(x-a) подставляются найденные значения а, f(a), f΄(a).

В примере 1 рассматривается составление уравнения касательной к графику функции у=1/х в точке х=1. Для решения задачи пользуемся алгоритмом. Для данной функции в точке а=1 значение функции f(a)=-1. Производная функции f΄(х)=1/х 2 . В точке а=1 производная f΄(a)= f΄(1)=1. Используя полученные данные, составляется уравнение касательной у=-1+(х-1), или у=х-2.

В примере 2 необходимо найти уравнение касательной к графику функции у=х 3 +3х 2 -2х-2. Основное условие - параллельность касательной и прямой у=-2х+1. Сначала находим угловой коэффициент касательной, равный угловому коэффициенту прямой у=-2х+1. Так как f΄(a)=-2 для данной прямой, то k=-2 и для искомой касательной. Находим производную функции (х 3 +3х 2 -2х-2)΄=3х 2 +6х-2. Зная, что f΄(a)=-2, находим координаты точки 3а 2 +6а-2=-2. Решив уравнение, получаем а 1 =0, а 2 =-2. Используя найденные координаты, можно найти уравнение касательной с помощью известного алгоритма. Находим значение функции в точках f(а 1)=-2, f(а 2)=-18. Значение производной в точке f΄(а 1)= f΄(а 2)=-2. Подставив найденные значения в уравнение касательной, получим для первой точки а 1 =0 у=-2х-2, а для второй точки а 2 =-2 уравнение касательной у=-2х-22.

В примере 3 описывается составление уравнения касательной для ее проведения в точке (0;3) к графику функции y=√x. Решение производится по известному алгоритму. Точка касания имеет координаты х=а, где а>0. Значение функции в точке f(a)=√x. Производная функции f΄(х)=1/2√х, поэтому в данной точке f΄(а)=1/2√а. Подставив все полученные значения в уравнение касательной, получаем у=√а+(х-а)/2√а. Преобразовав уравнение, получаем у=х/2√а+√а/2. Зная, что касательная проходит через точку (0;3), находим значение а. Находим а из 3=√а/2. Отсюда √а=6, а=36. Находим уравнение касательной у=х/12+3. На рисунке изображается график рассматриваемой функции и построенная искомая касательная.

Ученикам напоминаются приближенные равенства Δy=≈f΄(x)Δxи f(x+Δx)-f(x)≈f΄(x)Δx. Принимая х=а, x+Δx=х, Δx=х-а, получаем f(х)- f(а)≈f΄(а)(х-а), отсюда f(х)≈f(а)+f΄(а)(х-а).

В примере 4 необходимо найти приближенное значение выражение 2,003 6 . Так как необходимо отыскать значение функции f(х)=х 6 в точке х=2,003, можем воспользоваться известной формулой, приняв f(х)=х 6 , а=2, f(а)= f(2)=64, f΄(x)=6х 5 . Производная в точке f΄(2)=192. Поэтому 2,003 6 ≈65-192·0,003. Вычислив выражение, получаем 2,003 6 ≈64,576.

Видеоурок «Уравнение касательной к графику функции» рекомендуется использовать на традиционном уроке математики в школе. Учителю, осуществляющему обучению дистанционно, видеоматериал поможет более понятно объяснить тему. Видео может быть рекомендовано для самостоятельного рассмотрения учениками при необходимости углубить их понимание предмета.

ТЕКСТОВАЯ РАСШИФРОВКА:

Нам известно, что если точка М (а; f(а)) (эм с координатами а и эф от а) принадлежит графику функции у =f (x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f"(a) (эф штрих от а).

Пусть даны функция у = f(x) и точка М (a; f(a)), a также известно, что существует f´(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx+m (игрек равный ка икс плюс эм), поэтому задача состоит в отыскании значений коэффициентов k и m.(ка и эм)

Угловой коэффициент k= f"(a). Для вычисления значения m воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(a) = ka+m, откуда находим, что m = f(a) - ka.

Осталось подставить найденные значения коэффициентов kи mв уравнение прямой:

y = kx+(f(a) -ka);

y = f(a)+k(x-a);

y = f (a )+ f "(a ) (x - a ). (игрек равен эф от а плюс эф штрих от а, умноженный на икс минус а).

Нами получено уравнение касательной к графику функции y = f(x) в точке х=а.

Если, скажем, у = х 2 и х= -2 (т.е. а = -2), то f(а) = f(-2) = (-2) 2 =4; f´(x) = 2х, значит, f"(a) = f´(-2) = 2·(-2) = -4. (то эф от а равно четыре, эф штрих от икс равно два икс, значит эф штрих от а равно минус четыре)

Подставив в уравнение найденные значения a = -2, f(a) = 4, f"(a) = -4, получим: у = 4+(-4)(х+2), т.е. у = -4х-4.

(игрек равен минус четыре икс минус четыре)

Составим уравнение касательной к графику функции у = tgx(игрек равен тангенс икс) в начале координат. Имеем: а = 0, f(0) = tg0=0;

f"(x)= , значит, f"(0) = l. Подставив в уравнение найденные значения а=0, f(a)=0, f´(a) = 1, получим: у=х.

Обобщим наши шаги нахождения уравнения касательной к графику функции в точке х с помощью алгоритма.

АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x):

1) Обозначить абсциссу точки касания буквой а.

2) Вычислить f (а).

3) Найти f´(x) и вычислить f´(a).

4) Подставить найденные числа a, f(a), f´(а) в формулуy = f (a )+ f "(a ) (x - a ).

Пример 1. Составить уравнение касательной к графику функции у = - в

точке х = 1.

Решение. Воспользуемся алгоритмом, учитывая, что в данном примере

2) f(a)=f(1)=- =-1

3) f´(x)=; f´(a)= f´(1)= =1.

4) Подставим найденные три числа: а = 1, f(а) = -1, f"(а) = 1 в формулу. Получим: у = -1+(х-1), у = х-2.

Ответ: у = х-2.

Пример 2. Дана функция у = х 3 +3х 2 -2х-2 . Записать уравнение касательной к графику функции у= f(х), параллельной прямой у = -2х +1.

Используя алгоритм составления уравнения касательной, учтем, что в данном примере f(x) = х 3 +3х 2 -2х-2 , но здесь не указана абсцисса точки касания.

Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = -2х+1. А параллельные прямые имеют равные угловые коэффициенты. Значит, угловой коэффициент касательной равен угловому коэффициенту заданной прямой: k кас. = -2. Hok кас. = f"(a). Таким образом, значение а мы можем найти из уравнения f ´(а) = -2.

Найдем производную функции у= f (x ):

f "(x )= (х 3 +3х 2 -2х-2)´ =3х 2 +6х-2; f "(а)= 3а 2 +6а-2.

Из уравнения f"(а) = -2, т.е. 3а 2 +6а-2 =-2 находим а 1 =0, a 2 =-2. Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 0, другая в точке с абсциссой -2.

Теперь можно действовать по алгоритму.

1) а 1 =0, а 2 =-2.

2) f(a 1)= 0 3 +3·0 2 -2∙0-2=-2 ; f(a 2)=(-2) 3 +3·(-2) 2 -2·(-2)-2=6 ;

3) f"(a 1) = f"(a 2) = -2.

4) Подставив значения a 1 = 0, f(a 1) =-2, f"(a 1) = -2 в формулу, получим:

у=-2-2(х-0), у=-2х-2.

Подставив значения а 2 =-2, f(a 2) =6, f"(a 2)= -2 в формулу, получим:

у=6-2(х+2), у=-2х+2.

Ответ: у=-2х-2, у=-2х+2.

Пример 3. Из точки (0; 3) провести касательную к графику функции у = . Решение. Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере f(x) = . Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее, действуем по алгоритму.

1) Пусть х = а — абсцисса точки касания; ясно, что а >0.

3) f´(x)=()´=; f´(a) =.

4) Подставив значения a, f(a) = , f"(a) = в формулу

y=f (a) +f "(a) (x-a) , получим:

По условию касательная проходит через точку (0; 3). Подставив в уравнение значения х = 0, у = 3, получим: 3 = , и далее =6, a =36.

Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение a =36 в уравнение, получим: y=+3

На рис. 1 представлена геометрическая иллюстрация рассмотренного примера: построен график функции у =, проведена прямая у = +3.

Ответ: у = +3.

Нам известно, что для функции y = f(x), имеющей производную в точке х, справедливо приближенное равенство: Δyf´(x)Δx (дельта игрек приближенно равно эф штрих от икс, умноженное на дельта икс)

или, подробнее, f(x+Δx)-f(x) f´(x) Δx (эф от икс плюс дельта икс минус эф от икс приближенно равно эф штрих от икс на дельта икс).

Для удобства дальнейших рассуждений изменим обозначения:

вместо х будем писать а ,

вместо х+Δxбудем писать х

вместо Δх будем писать х-а.

Тогда написанное выше приближенное равенство примет вид:

f(x)-f(a)f´(a)(x-a)

f(x)f(a)+f´(a)(x-a). (эф от икс приближенно равно эф от а плюс эф штрих от а, умноженное на разность икса и а).

Пример 4. Найти приближенное значение числового выражения 2,003 6 .

Решение. Речь идет об отыскании значения функции у = х 6 в точке х = 2,003. Воспользуемся формулой f(x)f(a)+f´(a)(x-a), учтя, что в данном примере f(x)=x 6 , a = 2,f(a) = f(2) = 2 6 =64; x = 2,003, f"(x) = 6x 5 и, следовательно, f"(а) = f"(2) = 6·2 5 =192.

В итоге получаем:

2,003 6 64+192· 0,003, т.е. 2,003 6 =64,576.

Если мы воспользуемся калькулятором, то получим:

2,003 6 = 64,5781643...

Как видите, точность приближения вполне приемлема.

Слайд 2

Верно ли определение?

Касательная – это прямая, имеющая с данной кривой одну общую точку.

Слайд 3

Пусть дана и две прямые и, имеющая с данной параболой одну общую точку М (1;1).

Слайд 4

На данном уроке:

выясним, что же такое касательная к графику функции в точке, как составить уравнение касательной; рассмотрим основные задачи на составление уравнения касательной. Для этого: вспомним общий вид уравнения прямой условия параллельности прямых определение производной правила дифференцирования Формулы дифференцирования

Слайд 5

Определение производной

Пусть функция определена в некотором интервале, содержащем внутри себя точку. Дадим аргументу приращение такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции и составим отношение.Если существует предел отношения при, то указанный предел называют производной функции в точке и обозначают.

Слайд 6

Правила дифференцирования

Производная суммы равна сумме производных. Постоянный множитель можно вынести за знак производной. Производная произведения двух функций равна сумме двух слагаемых; первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции. Производная частного

Слайд 7

Основные формулы дифференцирования

  • Слайд 8

    Две прямые параллельны тогда и только тогда, когда их угловые коэффициенты равны

    Параллельны ли прямые:

    Слайд 9

    Пусть дан график функции y=f(x). На нем выбрана точка M(a;f(a)), в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

    Слайд 10

    Геометрический смысл производной

    Если к графику функции y = f (x)в точке можно провести касательную, непараллельную оси у, то выражает угловой коэффициент касательной

    Слайд 11

    Производная в точке равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке. Т.е. Причем, если: .

    Слайд 12

    Вывод уравнения касательной

    Пусть прямая задана уравнением: уравнение касательной к графику функции

    Слайд 13

    Составить уравнение касательной:

    к графику функции в точке

    Слайд 14

    к графику функции в точке

    Слайд 15

    Алгоритм нахождения уравнения касательной к графику функции y=f(x).

    Обозначим абсциссу точки касания буквой x=a. Вычислим. Найдем и. Подставим найденные числа a , в формулу

    Слайд 16

    Составить уравнение касательной к графику функции в точке.

    Слайд 17

    К графику функции провести касательную так, чтобы она была параллельна прямой.

    Слайд 18

    Слайд 19

    Самостоятельная работа

  • Слайд 20

    Номера из учебника

    № 29.3 (а,в) № 29.12 (б,г) № 29.18 № 29.23 (а)

    Слайд 21

    Ответьте на вопросы:

    Что называется касательной к графику функции в точке? В чем заключается геометрический смысл производной? Сформулируйте алгоритм нахождения уравнения касательной?

    Слайд 22

    Домашняя работа

    № 29.3 (б,г) № 29.12 (а,в) № 29.19 № 29.23 (б)

    Слайд 23

    Литература

    Алгебра и начала математического анализа: Учеб. Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009. Алгебра и начала математического анализа: Задачник, Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009. Алгебра и начала анализа. Самостоятельные и контрольные работы для 10-11 классов. / Ершова А.П., Голобородько В.В. – М.: ИЛЕКСА, 2010 ЕГЭ 2010. Математика. Задача В8. Рабочая тетрадь / Под редакцией А.Л.Семенова и И.В.Ященко – M.: Издательство МЦНМО, 2010

    Посмотреть все слайды