Минерал в состав входит железо. Главнейшие минералы железных руд. Круговорот железа в природе

Железо содержится в красных кровяных тельцах, в ткани мышц, в селезенке, печени и костном мозге.

Функции железа в организме:

  • играет важную роль в функционировании имунной системы.
  • необходимо для транспортировки кислорода к клеткам всего организма.
  • участвует в создании красных кровяных телец и ферментов.
  • участвует в синтезе гормонов щитовидной железы.
  • влияет на состояние кожи, волос и ногтей.
  • принимает участие в процессах регенерации.

Для всасывания железа необходима нормальная секреция желудочного сока. Недостаток железа в организме, в свою очередь, приводит к ухудшению желудочной секреции.

Всасыванию железа в организме препятствуют некоторые компоненты чая и кофе, а также фитин, клетчатка отрубей, соевый белок и кальций. Железо не усваивается с молоком и молочными продуктами.

Улучшают усвоение железа в организме витамин С, органические кислоты, некоторые простые углеводы (лактоза, фруктоза, сорбит) и аминокислоты (гистидин и лизин).

Симптомы недостатка железа:

  • слабость,
  • бледность,
  • головные боли,
  • быстрая утомляемость,
  • повышенная возбудимость и депрессия,
  • учащенное сердцебиение,
  • боли в области сердца,
  • сухость во рту,
  • инфекционные заболевания, вызванные снижением иммунитета,
  • анемия и малокровие.

Избыток железа

Отравление железом — серьезная и распространенная проблема:

  • Часто отравление железом происходит там, где железо содержится в питьевой воде.
  • При кислородном голодании организм компенсирует нехватку кислорода увеличением концентрации гемоглобина.
  • Примерно 15% людей являются носителями гена («геном кельтов»), заставляющего организм накапливать железо.

Некоторые симптомы отравления железом (избытка железа) похожи на симптомы недостатка железа:

  • бледность,
  • худоба,
  • слабость,
  • нарушения сердечного ритма.

Характерным признаком избытка железа является пигментация в таких местах, где ее быть не должно: на ладонях, подмышками.

Избыток железа очень опасен. Накопление железа происходит, в основном, в печени, поджелудочной железе и сердечной мышце, что оказывает пагубное влияние на отравленные органы. Если отравление железом продолжается, то развиваются такие заболевания, как:

  • гепатит, цирроз печени,
  • сахарный диабет,
  • заболевания суставов, артрит,
  • заболевания нервной системы,
  • серьезные заболевания сердечно-сосудистой системы,
  • рак пораженных отравлением органов.

При избытке железа следует принять комплексные меры:

  • Следить за правильным питанием для нормализации обмена веществ.
  • Гулять на свежем воздухе.
  • Начать заниматься спортом.
  • В крайнем случае, поможет кровопускание (донор крови).

Суточная доза железа

Рекомендуемая суточная норма потребления железа является весьма приблизительной. Невозможно рассчитать точную дозу, поскольку усвоение железа в организме зависит от состояния самого организма и от сопутствующих факторов. Следует сделать анализ крови при подозрении нехватки либо избытка железа.

Поэтому, суточная норма приводится только для ознакомления:

  • Юноши от 14 до 18 – 11мг.
  • Девушки от 14 до 18 15 мг.
  • Мужчины от 19 до 70 – 8 мг.
  • Женщины от 19 до 50 – 18 мг.
  • Женщины от 50 и старше – 8 мг.

Железо в продуктах

Часто недостаток железа возникает при резком изменении типа питания, т.к. любое резкое изменение образа жизни является тяжелым стрессом для организма. К тому же, в усвоении принимает активное участие микрофлора кишечника, которая тоже должна измениться.

  • Более 1 мг железа на 100 г содержат: арбуз, артишок, брюква, дыня, брюссельская капуста, сладкий перец, редис, редька, свекла, помидоры, топинамбур, шпинат (до 3 мг) и щавель (до 2 мг). Остальные овощи содержат от 0.4 до 0.9 мг железа на 100 г.
  • Богаты железом: сливовый и яблочный соки, курага, изюм, орехи, тыквенные и подсолнечные семечки.
  • Хлеб из муки грубого помола, черный хлеб, отруби (пшеничные и ржаные), крупы, зелень, салатные овощи, капуста так же содержат много железа.

Железо относится к группе самородных элементов. Самородное железо является минералом, имеющим земное и космогенное происхождение. Содержание никеля на 3 процента выше в земном железе, по сравнению с космогенным. Также содержатся примеси магния, кобальта и других микроэлементов. Самородное железо имеет светло-серый цвет с металлическим блеском, включения кристаллов редки. Это достаточно редкий минерал, обладающий твердость в 4-5 ед. и плотностью в 7000-7800 кг на метр кубический. Археологи доказали, что самородное железо использовалось древними людьми задолго до того, как появились навыки по выплавке металла железа из руды.

Данный металл в своем первоначальном виде имеет серебристо-белый оттенок, поверхность стремительно покрывается ржавчиной при высокой влажности или в воде, богатой кислородом. Данная порода отличается хорошей пластичностью, плавится при температуре в 1530 градусов по Цельсию, из него без труда можно ковать изделия и производить прокатку. Металл обладает хорошей электро- и теплопроводностью, дополнительно его отличают от других пород магнитные свойства.

При взаимодействии с кислородом поверхность металла покрывается образующейся пленкой, которая защищает его от коррозийного воздействия. А при содержании в воздухе влаги железо окисляется, и на его поверхности образуется ржавчина. В некоторых кислотах железо растворяется, и происходит выделение водорода.

История появления железа

Железо оказало огромное влияние на развитие человеческого общества и продолжает цениться сегодня. Его используют на многих производствах. Железо помогло первобытному человеку освоить новые способы охоты, привело к развитию сельского хозяйства благодаря новым орудиям. Железо в чистом виде в те времена было частью упавших метеоритов. По сегодняшний день ходят легенды о неземном происхождении данного материала. Металлургия берет свое начало в середине второго тысячелетия до н.э. В то время в Египте освоили получение металла из железной руды.

Где добывают железо?

В чистом виде железо содержится в небесных телах. Металл был обнаружен в лунном грунте. Сейчас железо добывают из руды горных пород, и Россия занимает лидирующее место по добыче этого металла. Богатые залежи железной руды расположены в европейской части, в Западной Сибири и на Урале.

Области применения

Железо необходимо при производстве стали, которая имеет широкий диапазон применения. Практически в каждом производстве используется данный материал. Широко применяется железо в быту, его можно встретить в виде кованных изделий и чугуна. Железо позволяет придавать изделию различную форму, поэтому его используют при ковке и создании беседок, ограждений и других изделий.

Пользуются железом все хозяйки на кухне, ведь изделия из чугуна, это не что иное как сплав железа и углерода. Посуда из чугуна равномерно нагревается, долго сохраняет температуру и служит не один десяток лет. В состав практически всех столовых приборов входит железо, а из нержавеющей стали изготовляют посуду и различные кухонные принадлежности и такие необходимые предметы, как лопаты, вилы, топоры и другие полезные приспособления. Широко используется данный металл и в ювелирном деле.

Химический состав

Теллурическое железо содержит примеси никеля (Ni) 0,6-2%, кобальта (Со) до 0,3%, меди (Сu) до 0,4%, платины (Pt) до 0,1%, углерода; в метеоритном железе никель составляет от 2 до 12%, кобальт-около 0,5%, имеются также примеси фосфора, серы, углерода.

Поведение в кислотах: растворяется в НNО3.
В природе существует несколько модификаций железа - низкотемпературная имеет ОЦК ячейку (Im3m), высокотемпературная (при температурах > 1179K) ГЦК ячейку (Fm(-3)m). В больших количествах содержится в метеоритах. В железных метеоритах при травлении или нагреве проявляются видманштеттеновы фигуры.
Происхождение: теллурическое (земное) железо редко встречается в базальтовых лавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в т.ч. и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов - железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Семейство самородного железа (по Годовикову)
Группа самородного железа
< 2,9, редко до 6,4 ат. % Ni - феррит
< ~ 6,4 ат. % Ni - камасит

Группа самородного никеля
> 24 ат. % Ni - тэнит
62,5 - 92 ат. % Ni - аваруит Ni3Fe
(Ni, Fe) - Самородный никель

Железо (англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO3,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

Свойства минерала

  • Происхождение названия: Обозначение химического элемента - от латинского ferrum, Iron – от староанглийского слова, означавшего этот металл
  • Место открытия: Qeqertarsuaq Island (Disko Island), Qaasuitsup, Greenland
  • Год открытия: известен с древних времён
  • Термические свойства: П. тр. Точка плавления (чистого железа) 1528°С
  • IMA статус: действителен, описан впервые до 1959 (до IMA)
  • Типичные примеси: Ni,C,Co,P,Cu,S
  • Strunz (8-ое издание): 1/A.07-10
  • Hey"s CIM Ref.: 1.57
  • Dana (7-ое издание): 1.1.17.1
  • Молекулярный вес: 55.85
  • Параметры ячейки: a = 2.8664Å
  • Число формульных единиц (Z): 2
  • Объем элементарной ячейки: V 23.55 ų
  • Двойникование: по {111}
  • Точечная группа: m3m (4/m 3 2/m) - Hexoctahedral
  • Пространственная группа: Im3m (I4/m 3 2/m)
  • Отдельность: по (112)
  • Плотность (расчетная): 7.874
  • Плотность (измеренная): 7.3 - 7.87
  • Тип: изотропный
  • Цвет в отраженном свете: белый
  • Форма выделения: Форма кристаллических выделений:плотные зерна с неправильными извилистыми очертаниями, плёнки, дендриты, изредка самородки.
  • Классы по систематике СССР: Металлы
  • Классы по IMA: Самородные элементы
  • Химическая формула: Fe
  • Сингония: кубическая
  • Цвет: Стально-серый, серо-черный, на полированной поверхности белый
  • Цвет черты: Серо-черный
  • Блеск: металлический
  • Прозрачность: непрозрачный
  • Спайность: несовершенная по {001}
  • Излом: крючковатый занозистый
  • Твердость: 4 5
  • Микротвердость: VHN100=160
  • Ковкость: Да
  • Магнитность: Да
  • Литература: Зарицкий П.В., Довгополов С.Д., Самойлович Л.Г. Состав и генезис рудопроявления самородного железа г. Озёрной в бассейне р. Курейки. - Вестник Харьковского ун-та, 1986, №283 (Средняя Сибирь) Мельцер М.А. и др. Самородное железо в золотонсных жилах Аллах-Юньского района и некоторые вопросы их генезиса. - Новые данные по геологии Якутии. Я., 1975, с. 74-78

Фото минерала

Статьи по теме

  • Железо - один из семи металлов древности.
    Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами

Месторождения минерала Железо

  • Красноярский край
  • Россия
  • Кугда, Хатанга, Таймыр.

/ минерал Железо

Железо относится к группе самородных элементов. Самородное железо является минералом, имеющим земное и космогенное происхождение. Содержание никеля на 3 процента выше в земном железе, по сравнению с космогенным. Также содержатся примеси магния, кобальта и других микроэлементов. Самородное железо имеет светло-серый цвет с металлическим блеском, включения кристаллов редки. Это достаточно редкий минерал, обладающий твердость в 4-5 ед. и плотностью в 7000-7800 кг на метр кубический. Археологи доказали, что самородное железо использовалось древними людьми задолго до того, как появились навыки по выплавке металла железа из руды.

Данный металл в своем первоначальном виде имеет серебристо-белый оттенок, поверхность стремительно покрывается ржавчиной при высокой влажности или в воде, богатой кислородом. Данная порода отличается хорошей пластичностью, плавится при температуре в 1530 градусов по Цельсию, из него без труда можно ковать изделия и производить прокатку. Металл обладает хорошей электро- и теплопроводностью, дополнительно его отличают от других пород магнитные свойства.

При взаимодействии с кислородом поверхность металла покрывается образующейся пленкой, которая защищает его от коррозийного воздействия. А при содержании в воздухе влаги железо окисляется, и на его поверхности образуется ржавчина. В некоторых кислотах железо растворяется, и происходит выделение водорода.

История появления железа

Железо оказало огромное влияние на развитие человеческого общества и продолжает цениться сегодня. Его используют на многих производствах. Железо помогло первобытному человеку освоить новые способы охоты, привело к развитию сельского хозяйства благодаря новым орудиям. Железо в чистом виде в те времена было частью упавших метеоритов. По сегодняшний день ходят легенды о неземном происхождении данного материала. Металлургия берет свое начало в середине второго тысячелетия до н.э. В то время в Египте освоили получение металла из железной руды.

Где добывают железо?

В чистом виде железо содержится в небесных телах. Металл был обнаружен в лунном грунте. Сейчас железо добывают из руды горных пород, и Россия занимает лидирующее место по добыче этого металла. Богатые залежи железной руды расположены в европейской части, в Западной Сибири и на Урале.

Области применения

Железо необходимо при производстве стали, которая имеет широкий диапазон применения. Практически в каждом производстве используется данный материал. Широко применяется железо в быту, его можно встретить в виде кованных изделий и чугуна. Железо позволяет придавать изделию различную форму, поэтому его используют при ковке и создании беседок, ограждений и других изделий.

Пользуются железом все хозяйки на кухне, ведь изделия из чугуна, это не что иное как сплав железа и углерода. Посуда из чугуна равномерно нагревается, долго сохраняет температуру и служит не один десяток лет. В состав практически всех столовых приборов входит железо, а из нержавеющей стали изготовляют посуду и различные кухонные принадлежности и такие необходимые предметы, как лопаты, вилы, топоры и другие полезные приспособления. Широко используется данный металл и в ювелирном деле.

Химический состав

Теллурическое железо содержит примеси никеля (Ni) 0,6-2%, кобальта (Со) до 0,3%, меди (Сu) до 0,4%, платины (Pt) до 0,1%, углерода; в метеоритном железе никель составляет от 2 до 12%, кобальт-около 0,5%, имеются также примеси фосфора, серы, углерода.

Поведение в кислотах: растворяется в НNО3.
В природе существует несколько модификаций железа - низкотемпературная имеет ОЦК ячейку (Im3m), высокотемпературная (при температурах > 1179K) ГЦК ячейку (Fm(-3)m). В больших количествах содержится в метеоритах. В железных метеоритах при травлении или нагреве проявляются видманштеттеновы фигуры.
Происхождение: теллурическое (земное) железо редко встречается в базальтовых лавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в т.ч. и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов - железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Семейство самородного железа (по Годовикову)
Группа самородного железа

Группа самородного никеля
> 24 ат. % Ni - тэнит
62,5 - 92 ат. % Ni - аваруит Ni3Fe
(Ni, Fe) - Самородный никель

Железо (англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO3 ,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

рассказать об ошибке в описании

Свойства минерала

Происхождение названия Обозначение химического элемента - от латинского ferrum, Iron – от староанглийского слова, означавшего этот металл
Место открытия Qeqertarsuaq Island (Disko Island), Qaasuitsup, Greenland
Год открытия известен с древних времён
Термические свойства П. тр. Точка плавления (чистого железа) 1528°С
IMA статус действителен, описан впервые до 1959 (до IMA)
Типичные примеси Ni,C,Co,P,Cu,S
Strunz (8-ое издание) 1/A.07-10
Hey"s CIM Ref. 1.57
Dana (7-ое издание) 1.1.17.1
Молекулярный вес 55.85
Параметры ячейки a = 2.8664Å
Число формульных единиц (Z) 2
Объем элементарной ячейки V 23.55 ų
Двойникование по {111}
Точечная группа m3m (4/m 3 2/m) - Hexoctahedral
Пространственная группа Im3m (I4/m 3 2/m)
Отдельность по (112)
Плотность (расчетная) 7.874
Плотность (измеренная) 7.3 - 7.87
Тип изотропный
Цвет в отраженном свете белый
Форма выделения Форма кристаллических выделений:плотные зерна с неправильными извилистыми очертаниями, плёнки, дендриты, изредка самородки.
Классы по систематике СССР Металлы

Железо - самый распространенный после алюминия металл на земном шаре; оно составляет около 5% земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Железо входит в состав многих минералов, из которых слагаются месторождения железных руд.

Основные рудные минералы железа:

Гематит (железный блеск, красный железняк) - Fe 2 O 3 (до 70% Fe);

Магнетит (магнитный железняк) - Fe 3 O 4 (до 72,4% Fe);

Гетит - FeOOH

Гидрогетит - FeOOH*nH 2 O (лимонит) - (около 62% Fe);

Сидерит - Fe(CO 3) (около 48,2% Fe);

Пирит - FeS 2


Месторождения железных руд образуются в различных геологических условиях; с этим связано разнообразие состава руд и условий их залегания. Железные руды разделяются на следующие промышленные типы:

    Бурые железняки - руды водной окиси железа (главный минерал - гидрогетит), 30-55% железа.

    Красные железняки, или гематитовые руды (главный минерал - гематит, иногда с магнетитом), 51-66% железа.

    Магнитные железняки (главный минерал - магнетит), 50-65% железа.

    Сидеритовые или карбонатные осадочные руды, 30-35% железа.

    Силикатные осадочные железные руды, 25-40% железа.

Большие запасы железных руд находятся на Урале, где целые горы (например Магнитная, Качканар, Высокая и др.) образованы магнитным железняком. Большие залежи железных руд имеются вблизи Курска, на Кольском полуострове, в Западной и Восточной Сибири, на дальнем Востоке. Богатые залежи имеются на Украине.

Железо является также одним из наиболее распространенных элементов в природных водах, где среднее содержание его колеблется в интервале 0,01-26 мг/л.

Животные организмы и растения аккумулируют железо. Активно аккумулируют железо некоторые виды водорослей, бактерии.

В теле человека содержание железа колеблется от 4 до 7г (в тканях, крови, внутренних органах). Железо поступает в организм с пищей. Суточная потребность взрослого человека в железе составляет 11-30мг. В основных пищевых продуктах содержится следующее количество железа (в мкг/100г.):

Молоко - 70

Картофель, овощи, фрукты - от 600 до 900

II . Техногенные источники поступления железа в окружающую среду.

В зонах металлургических комбинатов в твердых выбросах содержится от 22000 до 31000 мг/кг железа.

В прилегающие к комбинатам почвы поступает до 31-42 мг/кг железа. Вследствие этого железо накапливается в огородных культурах.

Много железа поступает в сточные воды и шламы от производств: металлургического, химического, машиностроительного, металлообрабатывающего, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного.

Пыль, дым промышленных производств могут содержать большие количества железа в виде аэрозолей железа, его оксидов, руд.

Пыль железа или его оксидов образуется при заточке металлического инструмента, очистке деталей от ржавчины, прокате железных листов, электросварке и при других производственных процессах, в которых имеют место железо или его соединения.

Железо может накапливаться в почвах, водоемах, воздухе, живых организмах.

Основные минералы железа подвергаются в природе фотохимическому разрушению, комплексообразованию, микробиологическому выщелачиванию, в результате чего, железо из труднорастворимых минералов переходит в водные объекты.

Окисление сульфидов можно описать в общем виде на примере пирита следующими микробиологическими и химическими процессами:


Как видно, при этом образуется еще один загрязняющий поверхностные воды компонент - серная кислота.

О масштабах ее микробиологического образования можно судить по такому примеру. Пирит - обычный примесный компонент угольных месторождений, и его выщелачивание приводит к закислению шахтных вод. По одной из оценок, в 1932г. в реку Огайо (США) с шахтными водами поступило около 3 млн. тонн H 2 SO 4 .

Микробиологическое выщелачивание железа осуществляется не только за счет окисления, но и при восстановлении окисленных руд. В нем принимают участие микроорганизмы, относящиеся к разным группам. В частности, восстановление Fe 3+ до Fe 2+ осуществляют представители родов Bacillus и Pseudomonas, а так же некоторые грибы.

Упомянутые здесь широко распространенные в природе процессы протекают так же в отвалах горнорудных предприятий, металлургических комбинатов, производящих большое количество отходов (шлаки, огарки и т.п.).

С дождевыми, паводковыми и грунтовыми водами высвобождающиеся из твердых матриц металлы переносятся в реки и водоемы. Железо находится в природных водах в разных состояниях и формах: в истинно растворенной форме входят в состав донных отложений и гетерогенных систем (взвеси и коллоиды).

Донные отложения рек и водоемов выступают в качестве накопителя железа. При определенных условиях железо может высвобождаться из них, в результате чего происходит вторичное загрязнение воды.

III . Химические свойства железа, его основные соединения.

Железо - элемент VIII группы периодической системы. Атомный номер 26, атомный вес 55,85 (56). Конфигурация внешних электронов атома 3d 6 4s 2 .

В природных водоемах, например, в Ладожском озере, в Неве, содержание железа меньше 0,3 мг/л. Перед поступлением в сети городского водоснабжения вода из водоемов подвергается фильтрации и действию коагулянтов, которые вместе с органическими примесями удаляют и часть железа.

Обработка воды с повышенным содержанием железа заключается в фильтровании на механических фильтрах (антрацит), коагуляции (коагулянт - глинозем Al 2 (SO 4) 3), иногда - в обработке магнитными полями (в случае магнитных форм железа).

Профилактические мероприятия, обеспечивающие безопасные условия труда при воздействии на работающих железа и его соединений определяются нормативными документами применительно к конкретным условиям производства.

V . Получение железа и его основных соединений, их практическое использование.

Из всех добываемых металлов, железо имеет наибольшее значение. Вся современная техника связана с применением железа и его сплавов. Количество добываемого железа примерно в 15 раз превосходит добычу всех остальных металлов вместе взятых.

Основным промышленным способом получения железа служит производство его в виде различных сплавов с углеродом - чугунов и углеродистых сталей. Чугуны получают доменным процессом, а стали - мартеновским, конверторным и электроплавильным процессами.

В доменном процессе в качестве основных шихтовых материалов участвуют: железная руда, кокс и известняк, необходимые для восстановления окислов железа в руде углеродом и разведения расплавленных чугуна и шлака.

В домну подается воздух или, для ускорения процесса, кислород (кислородное дутье). Углерод кокса окисляется кислородом: C+O 2 =CO 2 ; C+CO 2 =2CO.

Образующийся при этом СО и углерод кокса восстанавливают окислом железа:


Поскольку указанные реакции протекают при избытке углерода, восстановленное железо сплавляется с углеродом и образуется чугун со значительно более низкой температурой плавления, чем чистое железо. Чугун (с 4,3% С) плавится при 1135 о C, а железо при 1539 о C.

Расплавленные низкоплавкие чугун и шлак собираются в горне доменной печи и периодически выпускаются через специальные отверстия.

Способы передела чугуна - мартеновский, конверторный и электроплавильный, - сводятся к удалению избыточного углерода и вредных примесей (S, P) путем их окисления и к доводке содержания легирующих элементов до заданного путем добавления их при плавке.

Предельно допустимое содержание вредных примесей и необходимое содержание легирующих элементов установлены для каждой марки стали.

Чистое железо получают в виде порошка восстановлением его оксидов водородом или термическим разложением карбонила Fe(CO) 5 . Применение чистого железа ограничено, т.к. оно по своим механическим свойствам не удовлетворяет ряду требований к конструкционным материалам. Оно очень пластично.

Железо и его сплавы составляют основу современной техники. Значение железных сплавов для техники следует из того, что 95% всей металлической продукции составляет чугун и только 5% - сплавы остальных металлов.


Соединения железа.

Железный купорос FeSO 4 . 7H 2 O получают путем растворения обрезков стали в 20-30%-ной серной кислоте:


Железный купорос - светло-зеленые кристаллы, хорошо растворимые в воде. Применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей, для очистки сточных вод от цианидов.

При действии на железный купорос щелочи образуются гидроксиды железа - Fe(OH) 2 и Fe(OH) 3 .

Эти гидроксиды применяют в качестве пигментов. Природный гидроксид железа FeS 2 (пирит) служит сырьем для получения серной кислоты, серы и железа.

Нитрат железа Fe(NO 3) 3 получается при действии на железо азотной кислоты. Применяется как протрава при крашении хлопчатобумажных тканей и как утяжелитель шелка.

Хлорид железа FeCl 3 образуется при нагревании железа с хлором, хлорированием FeCl 2 . Применяется как коагулянт при очистке воды, как протрава при крашении тканей, как катализатор в органическом синтезе.

Сульфат железа Fe 2 (SO 4) 3 образует кристаллогидрат Fe 2 (SO 4) 3 . 9H 2 O (желтые кристаллы). Получают растворением оксида Fe 2 O 3 в серной кислоте. Применяется как коагулянт при очистке воды, для травления металлов, используется при получении меди.

Оксиды железа обычно получают при действии водяного пара на раскаленное железо. Природные оксиды железа служат основным сырьем для получения металлического железа (его сплавов).

Fe 2 O 3 и его производные (ферриты) используют в радиоэлектронике как магнитные материалы, в том числе как активные вещества магнитофонных лент.

Fe 3 O 4 служит материалом для изготовления анодов в ряде электрохимических производств.

Ферриты - при сплавлении оксида железа (III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:


В технике ферритами или ферритными материалами называют продукты спекания порошков Fe 2 O 3 и оксидов некоторых двухвалентных металлов, например, Ni, Zn, Mn.

Ферриты обладают ценными магнитными свойствами и высоким электрическим сопротивлением.

Ферриты широко применяются в технике связи, счетно-решающих устройствах, в автоматике и телемеханике.

Соединения железа (VI).

Если нагревать стальные опилки или Fe 2 O 3 с нитратом и гидроксидом калия, то образуется сплав, содержащий феррат калия K 2 FeO 4 - соль железной кислоты H 2 FeO 4 , которая в свободном виде не получена.

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители, более сильные, чем KMnO 4 .

Карбонилы железа

Железо образует летучие соединения с окисью углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 - бледно-желтая жидкость, не растворимая в воде, но растворимая во многих органических растворителях. Fe(CO) 5 получают пропусканием CO над порошком железа при 150-200 o С и давлении 100 атм. При нагревании в вакууме Fe(CO) 5 разлагается на железо и CO. Это используется для получения высокочистого порошкового железа - карбонильного железа.


Сплавы железа - это металлические сплавы на основе железа. До начала XIX века к сплавам железа относили преимущественно Fe-C (с примесями Si, Mn, S, P), получившие название сталей и чугунов. Возрастающие требования техники к металлическим материалам, прежде всего в отношении их механических свойств, жаропрочности, коррозионной стойкости в различных агрессивных средах привели к созданию новых сплавов железа содержащих Cr, Ni, Si, Mo, W и др.

В настоящее время к сплавам железа относят: углеродистые стали, чугуны, легированные стали, содержащие кроме углерода другие элементы, и стали с особыми физико-химическими и механическими свойствами.

Кроме того для введения в сталь легирующих элементов применяются особые сплавы железа, получившие название ферросплавов.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Чугун отличается от стали более высоким содержанием углерода и своими свойствами. Он хрупок, но обладает хорошими литейными свойствами. Чугун дешевле стали. Основная масса чугуна перерабатывается в сталь.

Элементы, специально вводимые в сталь для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной. К важнейшим легирующим элементам относятся Cr, Ni, Mn, W, Mo. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий никель и хром и другие).

Из медно-никелевых сплавов (мельхиор и другие) изготавливают монеты, украшения, предметы домашнего обихода.

Гальванические покрытия металлов никелем предают им красивый внешний вид.

Список использованной литературы:

1. «Краткая химическая энциклопедия».

(издательство «Советская энциклопедия», 1963г.)


2. М.Х. Карапетьянц, С.И. Дракин - «Общая и неорганическая химия»

(издательство «Химия», 1981г.)


3. Н.А. Глинка - «Общая химия»

(издательство «Химия», 1975г.)


4. Справочник «Вредные химические вещества, неорганические соединения элементов V-VIII групп».

(издательство «Химия», 1989г.)


5. В.А. Исидоров - «Введение в химическую экотоксикологию»

(«Химиздат», 1999г.)

Железо представляет собой важный для здоровья человека микроэлемент, значение которого нельзя переоценить, так как он входит в состав семидесяти ферментов, оберегающих клетки организма. Данный металл является важнейшим биологически активным веществом, который имеет способность быстрого восстановления и окисления.

Железо участвует в транспортировке кислорода в крови

Железо в организме человека отвечает за «производство» гемоглобина крови, что нормализует питание тканей, систем и органов. Это обусловлено улучшением кровообращения, благодаря чему поддерживается активность и здоровье организма.

  • Поддержание иммунной системы;
  • Повышение физической активности;
  • Укрепление костных тканей;
  • Нормализация кровообращения;
  • Поддержание работы щитовидной железы;
  • Поддержание и восстановление ЦНС.

В организме человека присутствует очень мало железа, но, несмотря на это без него невозможны многие функции. Основная роль минерала – производство белых (лимфоцитов) и красных (эритроцитов) кровяных клеток. Лимфоциты отвечают за иммунитет, а эритроциты снабжают кровь кислородом.

В организм железо поступает непосредственно с пищей. В продуктах питания животного происхождения данный минерал содержится в легкоусвояемой форме. Существуют и растительные продукты, богатые железом, но организм тяжелее усваивает микроэлемент, поступающий с подобными источниками.

Железо поступает в пищеварительный тракт, где на него воздействует желудочный сок, вследствие чего происходит его усваивание. Всасывание микроэлемента производится непосредственно в двенадцатиперстной кишке, а также в верхнем отделе тонкого кишечника. Именно таким путём железо попадает в кровь, где связывается с белком и вместе с кровотоком переносится в необходимые отделы организма.

В каких продуктах содержится железо

В 100 граммах мяса содержится 2-3 мг железа

Аскорбиновая кислота, сорбит, фруктоза и янтарная кислота обеспечивает лучшее всасывание железа в организм. Соевый белок напротив, угнетает усваивание данного минерала, что говорит о необходимости исключения продукта из рациона при недостатке железа в организме. Чай и кофе содержат частицы, отрицательно влияющие на процесс всасывания микроэлемента, поэтому опытные диетологи рекомендуют после приёма пищи употреблять соки, что благоприятно влияет на усваивание железа клетками пищеварительной системы.

Животные источники железа

  • Мясные продукты – телятина, говядина, свинина, крольчатина, индейка;
  • Субпродукты – печень;
  • Морепродукты – моллюски, улитки, устрицы;
  • Рыба – скумбрия, горбуша;
  • Яичный желток.

Растительные источники железа

  • Злаки – цельная овсянка, гречка;
  • Бобовые – красная фасоль;
  • Овощи – свекла, сельдерей, цветная капуста, помидоры, тыква;
  • Фрукты – яблоки, груши, абрикосы, виноград, инжир, персики;
  • Сухофрукты – курага, чернослив, финики, изюм, груши, яблоки;
  • Ягоды – ежевика, черника, земляника;
  • Грецкие орехи.


Суточные нормы железа

От общего количества железа, которое поступает в организм с продуктами питания, усваивается только 10%. Это обусловлено тем, что разные продукты, содержащие данный минерал усваиваются по-разному. С продуктами животного происхождения микроэлемент усваивается гораздо быстрее и лучше. Суточная норма железа устанавливается для каждого человека индивидуально, что зависит от его образа жизни и возраста.

Суточная норма для детей

Детский организм нуждается в 5-15 миллиграммах в зависимости от возрастной группы, чем старше ребёнок, тем больше минерала ему необходимо.

Суточная норма для женщин

Женский организм при здоровом образе жизни и полноценном питании нуждается в 20 мг железа. В период беременности и в послеродовый период, потребность в минерале увеличивается, и составляет 30 миллиграмм в сутки.

Суточная норма для мужчин

Мужскому организму необходимо от 10 до 15 миллиграмм железа. Необходимость в данном микроэлементе повышается при физических нагрузках и злоупотреблении алкогольными напитками и курением.

Недостаток железа в организме

Нехватка железа в организме человека возникает в следующих случаях:

Период беременности, роста организма и лактации могут также привести к недостатку железа. Дефицит минерала может развиться после перенесенных инфекционных заболеваний, а также при патологических нарушениях кишечной флоры.

Отсутствие в рационе питания мясных продуктов и преобладание корнеплодов и картофеля, приводит к возникновению серьёзных проблем, связанных с дефицитом микроэлемента.

Последствия дефицита железа

  • Развитие мышечной слабости и одышка;
  • Сухость кожных покровов;
  • Преждевременное появление морщин;
  • Ломкость волос и ногтей;
  • Ухудшение памяти;
  • Излишняя раздражительность;
  • Сонливость;
  • Снижение способности сосредоточивания.

Люди, страдающие недостатком железа в организме, отличаются бледностью кожи и склонностью к обморочным состояниям и частым головокружениям.

Избыток железа в организме

Избыток железа в организме также приводит к неприятным последствиям, так как данный микроэлемент обладает способностью накапливания во внутренних органах человека: сердце, печени, поджелудочной железе. Подобное накопление может привести к повреждению тканей внутренних органов, а также к нарушению их физиологических функций.

Видео из интернет

Причины передозировки

  • Повышенная всасываемость железа кишечником;
  • Некоторые наследственные факторы;
  • Массивное переливание крови;
  • Неконтролируемое использование железосодержащих препаратов.

Препараты, содержащие железо

Препараты железа – представляют собой группу лекарственных средств, которые содержат соли и комплексы соединений микроэлемента, или его комбинации с другими минералами. В основном данные препараты используют для профилактики и лечения железодефицитной анемии.


Лекарственные препараты, содержащие данный минерал должны назначаться врачом после проведения необходимых анализов . Самостоятельный приём железа в виде лекарственных средств может нанести большой вред здоровью.

Правила приёма препаратов железа

  1. Запивать небольшим количеством воды;
  2. Не принимать перорально с препаратами кальция, тетрациклинами, левомицетином, а также антацидами (альмагелем, фосфалюгелем и т. д.);
  3. Не увеличивать дозировку даже после пропуска приёма.

Побочные эффекты от приёма препарата железа выражаются в виде гиперемии кожи, тошноты, снижения аппетита, появления запора или диареи, кишечных коликов и отрыжки. В данном случае употребление препаратов следует прекратить.

Особую аккуратность при приёме лекарственных средств данного минерала следует соблюдать в детском возрасте, так как передозировка железа (300 миллиграмм в сутки) может привести к летальному исходу.

В настоящее время наиболее популярны следующие препараты железа, которые обладают максимально точной дозировкой минерала и имеют минимум побочных воздействий на организм:

  1. Конферон (Conferon) – венгерское производство, выпуском по 50 капсул, каждая из которых содержит диоктилсульфосукцинат натрия – 35 мг и сульфат железа (II) - по 250 мг (50 миллиграмм элементарного железа). Натрий способствует всасыванию в организм железа и повышает его терапевтическую эффективность. Назначается при железодефицитной анемии различной этиологии.
  2. Феракрил (Feracrylum)– содержит в составе неполную железную соль полиакриловых кислот. Выпускается в виде стеклообразных хрупких пластинок жёлтого или тёмно-коричневого цвета. Трудно растворяется в воде. Используется для образования сгустков с кровяным белком. Применяется как местное гемостатическое средство.
  3. Феррум лек (Ferrum Lek) – препарат железа для внутривенных и внутримышечных инъекций, югославского производства. Расчёт дозировки лекарственного средства производится для каждого пациента индивидуально.
  4. Гемостимулин (Haemostimulinum) – назначается для стимулирования кровотечений и лечения гипохромных анемий различной этиологии. Выпускается в таблетированной форме. Содержит лактат закисного железа в количестве 0,246 грамма.

Железистые минералы флотируют под воздействием реагентов-нафтеновой олеиновой кислот олеата натрия, жидкого стекла; последнее время успешно применяют окисленный керосин. Для флотации марганцевых руд применяют реагенты: олеиновую кислоту, соевое масло, мыло, растворимое стекло соду.
От других железистых минералов отличается по вишнево-красной черте, оставляемой на неглазурованном фарфоре. Гематит - химически стойкий минерал, образует мощные месторождения железной руды, являющейся ценным сырьем для получения чугуна и стали. Известные месторождения гематитовых руд находятся в районе Курской магнитной аномалии, на Северном Урале, на Украине.
В каолине всегда присутствуют свободные железистые минералы, которые имеют коэффициент преломления 2 2 - 2 4 и интенсивно окрашены, что даже при незначительном их содержании придают каолину самые разнообразные оттенки от светло-желтого до бурого и красно-бурого цвета. На оптические свойства каолина большое влияние оказывают также и титановые минералы, которые даже при небольших количествах (не более 1 %) могут повлиять на его качество.
Большое содержание кварца, а также железистых минералов и других примесей снижает качество огне упорных глин и каолинов, что вызывает в некоторых случаях необходимость их обогащения.
По минералогическому составу основная часть шламов представляет собой железистые минералы: гематит, магнетит, феррит кальция и пирит, встречаются также кварц, силикаты, карбонаты (известь) и обломки зерен органического происхождения - коксик. Наиболее распространенным минералом является гематит. Зерна гематита имеют неправильную форму, размер их колеблется от долей микрона до 0 15 мм, в среднем 0 03 мм. Гематит в основном представлен свободными зернами, реже встречаются сростки гематита и кварца, а также сцементированные стекловидной связкой (оливин) мелкие зерна гематита. В наиболее крупных зернах гематита наблюдается остаточный магнетит. Свободных зерен магнетита не имеется.
Железорудные породы обычно окрашены в бурые, желто-бурые, зеленовато-бурые цвета, в зависимости от цвета слагающих их железистых минералов.
Они обычно содержат наряду с указанными окислами калия и натрия различные примеси, из которых наиболее вредными являются окислы железа, серный колчедан и железистые минералы, сообщающие полевым шпатам желтую или розоватую окраску. Полевой шпат увеличивает тугоплавкость эмали, повышает ее химическую стойкость и усиливает ее непрозрачность в присутствии плавикового шпата и кремнефтористого натрия. При плавке эмали очень важную роль играет крупность размола шпата. Чем больше измельчен шпат, тем легче плавится шихта.
В качестве примесей входят также кремнезем в виде кварца и опала, реже халцедона, диоксид титана в виде рутила и ильменита, железо - в виде различных железистых минералов: лимонит, гематит, сидерит и др. Некоторые каолины содержат минералы гиббсит и диаспор, вследствие чего в них отмечается повышенное содержание оксида алюминия.
Кроме того, к глинистому раствору добавляют специальные утяжелители для доведения его плотности до 1 6 - 2 0 кг / дм3 вместо 1 2 для обычного раствора. В качестве утяжелителей используют железистые минералы (магнетит, гематит), барит, концентрат колошниковой пыли. Такой раствор с утяжелителями применяют в том случае, если давление в скважине оказывается аномально высоким или в призабоинои зоне раствор начинает насыщаться прорывающимися в него газом или нефтью.
Источником железа являются кристаллические породы, содержащие многочисленные железистые минералы. При процессах выветривания железо переходит в гидроокись и перемещается водами в виде механической взвеси и коллоидов гидроокиси железа. Частично перенос осуществляется в виде сульфатов и бикарбонатов закисного железа. Принесенное таким путем железо распределяется в водоемах по законам механической дифференциации согласно с гидродинамикой бассейна. Поскольку частицы взвеси и коллоиды имеют малые размеры, наибольшие (кларковые) количества железа наблюдаются в глинистых; осадках.
Волластонит встречается главным образом в мрамо-ризованных известняках или в известковистых кристаллических сланцах. В качестве примесей ему сопутствуют кварц, железистые минералы, известковистые гранаты, диопсид, везувиан и другие минералы.
Наиболее удобны для выявления условий или колебаний окислительно-восстановительной обстановки широко распространенные в природе железистые минералы, а для выявления реакции среды минералы группы глин и карбонатные минералы.
По сводке, составленной Э. М. Бонштедт, нефелиновые месторождения СССР классифицируются следующим образом. Бесспорное промышленное значение имеют здесь громадные скопления Хибинских тундр: 1) нефелиновые пески, перемытые и в значительной степени очищенные от железистых минералов, продукты ме-хаиич. Имандра между ст. Хибины и Имандра, слагая Большой и Малый Песчаные Наволоки; по подсчету П. А. Борисова общий запас нефелиновых песков до 900 000 т; они содержат до 60 - 70 % нефелина; химич. Отдельными звеньями этой дуги являются мощные интрузии Куэльспора и Порисом-чорра. Минералогический состав этих пород приведен в табл. 3 (по данным В.
Характеристика глинистого сырья по содержанию тонкодисперсных фракций (по ГОСТ 9169 - 75.
По размеру крупнозернистых включений глины подразделяются на группы с мелкими включениями (менее 1 мм), средними - от 1 до 5 мм, крупными - свыше 5 мм. По виду крупноразмерных включений глины подразделяют на группы с включением обломков горных пород (гранит, сланцы, кварциты и др.); железистых минералов; гипса; карбонатов (кальций, доломит и др.); органических остатков и угля. В зависимости от содержания свободного кварца глинистое сырье подразделяют на группы с низким (до 10 %), средним (свыше 10 до 25 %) и высоким (свыше 25 %) содержанием кварца.
К железистым породам относятся железные руды осадочного генезиса, окисные, карбонатные, силикатные и различные железистые образования - орштейны, орзанды, а также россыпи песков, богатые железистыми минералами.
Коэффициенты селективности (А пар катионов тяжелый металл - Са2 (по B.C. Горбатову. При окислительном выветривании и почвообразовании образуются и накапливаются в биосфере минералы железа (III), преимущественно оксиды и гидроксиды, слаборастворимые и геохимически относительно инертные. В почвах обнаружены многие минералы железа (II) и железа (III), в том числе оксиды: гематит Fe2O3, магнетит FeO Fe2O3; маггемит Fe2O3; гидроксиды: гетит FeOOH, лимонит 2Fe2O3 ЗН2О; сульфиды; кислые железистые минералы: ярозит [ NaKFe6 (OH) 12 (SO4) 4l, феронатрит [ Na3Fe (SO4) 3 ЗН2О ], фосфаты, силикаты, арсенаты железа, органожелезистые соединения, аморфные осадки гидроксидов.
В протерозойский этап, продолжавшийся в течение 1 -: 1 5 млрд. лет, вулканическая деятельность была менее интенсивной, в океанах и морях накапливались различные осадки. В некоторых протерозойских водных бассейнах интенсивно развивались различные организмы (например, железоосаждающие бактерии, водоросли и др.), благодаря которым осадки обогащались железом или карбонатами. Вот почему в протерозойских отложениях довольно часто встречаются железистые минералы (руды и железистые) кварциты Курской магнитной аномалии, Канады и др.), мощные толщи известняков, нередко водорослевых, и доломитов, а иногда и прослои шунгитов - прообраз будущих углей. Во многих областях мира протерозойские отложения были погружены на большие глубины, сильно деформированы и пронизаны раскаленной магмой, вследствие чего они сильно изменились и превратились в гнейсы, кварциты и другие метаморфические породы.
Обычное механическое обогащение не обеспечивает получения качественных концентратов из таких продуктов в сочетании с удовлетворительным извлечением. Хотя вряд ли исчерпаны все возможности механического обогащения ожелезненных минеральных смесей, следует Полагать, что решение этого вопроса весьма сложно и потребует длительных изысканий принципиально новых методов на основе тонкого использования различий в физических и физико-химических свойствах ожелезнеиных минералов. В этих условиях приобретают особое значение методы избирательного растворения железистых минералов при сохранении ценных минералов редких металлов в нерастворимом остатке.
В виде случайных примесей металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина пли других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как, например, гематит (мартит и железный блеск), гетит, гидрогетит, гпдрогематит и некоторые другие обладают способностью намагничиваться в электромагнитном поле.
Узянбаш, также обнаружена марганцевая минерализация подобного типа. Здесь в восточном борту той же автомагистрали п.п. Серменево-Аскарово обнажена глинисто-щебнистая элювиальная кора выветривания предположительно по кварцевым алевролитам и кварци-то-песчаникам. Рыхлые отложения имеют яркую желтовато-бурую окраску, указывающую на повышенное содержание железистых минералов в исходных породах. В элювиальных обломках вмещающих отложений нередко встречаются налеты окислов марганца, а иногда и небольшие куски прожилково-вкрапленной до сплошной марганцевой руды.
Конечно, в песке могут попадаться еще и другие, неизмененные водою пли трудно изменяемые ею каменистые вещества, но так как эти последние более или менее подвергаются изменению при продолжительном действии воды, то нередки и такие пески, в которых содержится только почти один чистый кварц. Обыкновенный песок от подмеси посторонних минералов имеет желтый или красно-бурый цвет, зависящий от железистых минералов и железистой глины. Самый чистый песок, или так называемый кварцевый песок, попадается, однако, довольно редко и характеризуется своею бесцветностью и тем, что, взболтанный с водою, не дает мути, которая показывает подмесь глины; при сплавлении с основаниями он дает бесцветное стекло, отчего и составляет ценный материал для производства стекла.
Нефелин входит в состав этих пород как существенная часть; при выработке апатитовых концентратов получаются хвосты с содержанием 70 - 75 % нефелина. Уртитовые и йолитовые жилы находятся также в менее исследованных Ловозерских тундрах; жильные нефелиновые породы встречены также на по-бережьи Белого моря, на Турьем полуострове, в Чешской губе и др. Другой областью накопления нефелиновых пород является Южный Урал, где нефелиновые сиениты-миасскиты слагают меридиональную полосу длиной ок. Ильменские горы, Вишневые горы и др. В составе миасскитов нефелин составляет всего 20 - 25 % при довольно высоком содержании цветных железистых минералов; поэтому практич.
Это можно установить лишь минералогическим анализом, путем непосредственного изучения аутигенных минералов в шлифах, что дает возможность выявить весь ход аутигенного минералообразования и тем самым определить изменение геохимических условий на разных стадиях литогенеза. Поэтому данные химического анализа должны интерпретироваться лишь совместно с данными мине-ралого-петрографических исследований. Учитывая это, а также используя огромный фактический материал по нефтегазоносным регионам Узбекистана, мы (А. М. Акрамходжаев и X. X. Авазходжаев) предложили выделить шесть типов геохимических обстановок, определяемых по соотношению реакцион-носпособных форм железа, сингенетичным и диагенетическим железистым минералам и содержанию остаточного ОВ.
Однако бывают случаи, когда давление газа или нефти гораздо больше гидростатического для данной глубины. Чтобы предотвратить фонтанирование, в этих случаях применяют утяжеленные глинистые растворы. Для этого добавляют в раствор тонко размолотые вещества большой плотности. К таким веществам относятся железистые минералы магнетит и гематит, концентрат колошниковой пыли и барит.
В то же время, сравнивая характеристики магнитного и гравитационного полей, можно видеть, что для указанной области характерны интенсивные отрицательные гравитационные аномалии, а для района Южно-Апшеронской впадины - региональный, гравитационный, отрицательный экстремум. Все это как будто не свидетельствует в пользу развития здесь плотных магнитоактивных тел в основании осадочного разреза и требует поиска иного объяснения слабоположительного поля в Южном Каспии. В качестве такового может быть рассмотрено влияние повышенного содержания магнитоактивных, прежде всего железистых минералов в составе неконсолидированного, песчано-глинистого разреза кайнозоя Южно-Каспийской впадины. Косвенными признаками этого являются геохимические характеристики современных донных отложений, которые показывают повышенное содержание пластического магнетита и титаномагнетита в песках и железистых минералов в глинистых породах, а также повышенное содержание железа в зольных остатках нефтей Южного Каспия, часть которого могла быть прихвачена флюидом из вмещающих пород.
Присутствие в железной руде металлического железа - явление весьма редкое. В виде самородного железа (палласита) оно встречается в некоторых магматических месторождениях. В виде примеси металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина или других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как например, гематит (мар-тит и железный блеск), гетит, гидрогетит, гидрогематит и некоторые другие намагничиваются в электромагнитном поле. В таких случаях металлическое железо удалить при помощи магнита нельзя и его приходится определять наряду с FeO и Fc20s, как указано ниже.

Велер выполнил ряд важных исследований, посвященных титану, этому весьма распространенному в земной коре элементу, огромное практическое значение которого проявляется только в наше время. Открытие титана прежде всего связывается с именем отличного аналитика минералов В. Грегора, который определил в 1789 г., что в рутиле присутствует ранее неизвестный элемент. Клащрот в 1795 г. нашел, что в некоторых железистых минералах содержится новая земля - окись титана. Название элемента было дано Клапротом.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти н газа в южной, центральной и северной зонах, привел к Открытию Ниязбекского месторождения н Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти и газа в южной, центральной и северной зонах, привел к открытию Ниязбекского месторождения и Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Серпентиниты обладают сетчатой и петельчатой структурами. В первом случае они состоят из клиновидного у-лизардита, который хорошо диагностируется по отрицательному удлинению. Промежутки между клиньями у-лизардита заполнены изотропным серпофитом. Петельчатая структура характерна для а-лизардитов. В серпентинитах так же присутствует хризотил. Он, как правило, заполняет трещины и является более поздним образованием. По данным А.А. Алексеева / 1976 /, серпентиниты Кирябинского массива сложены более железистыми минералами по сравнению с аналогичными породами Бирсинского комплекса.
Пересчет химических анализов флогопита из флогопитовых месторождений показал, что увеличение содержания не только FeO, но и Fe2O3 сопровождается уменьшением содержания магнезии и увеличением содержания глинозема (Коржинский, 1945Ь стр. Fe, закисное и окисное, изоморфно с Mg, так как при этом поля составов флогопита и клинопироксена оказываются наиболее узкими. При допущении изоморфности с магнием одного закисного железа точки состава флогопитов рассеиваются в большей степени. Некоторыми авторами высказывалось предположение, что первоначально все железо железо-магнезиальных слюд, а также роговых обманок и некоторых пироксенов, могло находиться в закисном состоянии, изоморфном с магнием, с последующим окислением части железа при понижении температуры. Fe / Mg в группе (Mg Fe) приводит к изменению состава этих минералов в отношении других компонентов; в частности, в флогопитах приводит к повышению содержания глинозема. Это лишает нас возможности точной передачи на одной диаграмме (фиг. Для флогопитовых месторождений, залегающих среди более железистых пород, например среди пироксеновых амфиболитов, характерны не только более железистые минералы, но изменяются и параге-нетические отношения минералов. Именно, вместо ассоциации диопсид скаполит флогопит (фиг.

Геохимия железа

ученика 9 «Б» класса

Раевского Георгия


Железо – не только самый главный металл окружающей нас природы, – оно основа культуры и промышленности, оно орудие войны и мирного труда. И трудно во всей таблице Менделеева найти другой элемент, который был бы так связан с прошлыми, настоящими и будущими судьбами человечества.

Академик Александр Евгеньевич Ферсман, выдающийся советский геохимик, минералог, географ и путешественник

Что такое геохимия?

Римский писатель-эрудит, автор «Естественной истории» Плиний-старший писал: «Железорудные копи доставляют человеку превосходнейшее орудие. Ибо сим орудием прорезываем мы землю, обрабатываем плодовитые сады и, обрезая дикие лозы с виноградом, понуждаем их каждый год юнеть. Сим орудием выстраиваем дома, разбиваем камни и употребляем железо на все подобные надобности».

Полезные ископаемые, в том числе и железо, ценились не только в начале христианской эры, во времена Плиния. В наш век, немыслимый без научно-технических разработок и развитой промышленности, их значение возросло еще больше. Но для того, чтобы человечество получало необходимые элементы в достаточном количестве, их необходимо постоянно добывать. А для этого нужно знать закономерности распределения химических элементов на планете Земля.

Изучением этих закономерностей занимают различные науки, среди которых ведущее место занимает геохимия - наука о химическом составе Земли, законах распределения элементов и их изотопов и о процессах формирования горных пород, почв и и природных вод. (Если кому интересно, то такими же изысканиями во внеземном пространстве занимается наука космохимия). Поскольку химические элементы содержатся в земной коре в виде руд и минералов, геохимия с одной стороны – родная сестра химии, а с другой – тесно соприкасается с геологией. А одной из главных областей геологии является изучение размещения полезных ископаемых в земной коре. Поэтому геохимию часто рассматривают как некую гибридную научную область, возникшую на границе геологии и химии. Так что отчасти будет справедливым такое «уравнение»: «геохимия = геология + химия» – но только отчасти.

Термин «геохимия» появился в последней четверти XIX века. Предположительно, в научный обиход его ввел один из первых профессиональных геохимиков – американский ученый Франк Кларк (1847-1931), которого называют отцом геохимии.

Одним из основателей современной геохимии по праву считается и выдающийся русский ученый В. И. Вернадский. В 1927 году он так расшифровал содержание этой науки: «Геохимия изучает химические элементы, то есть атомы земной коры и, насколько возможно, всей планеты. Она изучает их историю, их распределение и движение в пространстве-времени, их генетические на нашей планете соотношения».

В настоящее время наиболее распространенный взгляд на предмет и содержание геохимии таков: современная геохимия изучает распределение и содержание химических элементов в минералах, рудах, породах, почвах, водах и атмосферную циркуляцию элементов в природе на основе свойств их атомов и ионов.

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, в том числе Земли, где его содержание достигает 90%. Содержание железа в земной коре составляет от 4 до 5%, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86% всего железа, а в мантии 14%.

Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002 – 0,02 мг/л. В речной воде несколько выше – 2 мг/л.

Большую роль железо играет в биосфере, так как атом железа входит в состав гемоглобина – белка красных клеток крови у высших организмов. Гемоглобин участвует в доставке кислорода к тканям и клеткам.

Считается, что железо вместе с никелем, кобальтом и кислородом (по другой теории – водородом) входит в состав земного ядра. Давление в центре Земли колоссальное (около 3 миллионов атмосфер), и свойства этих элементов, в том числе и железа должны стать необычными. Ученые полагают, что при таких сжатиях водород становится металлом, а электронная структура атомов железа и других металлов (прежде всего, внешние электронные оболочки) может сильно изменяться. Однако, хотя фантасты уже много раз описали путешествие к центру Земли, непосредственно состав земного ядра мы изучить не можем: геохимики судят о нем на основе косвенных данных.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Рудами называются природные минералы, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Содержание железа в промышленных рудах изменяется в широких пределах – от 16 до 70%. В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или, если они содержат менее 50% Fe, после обогащения. Бóльшая часть железных руд используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах они используются в качестве природных красок (охры) и утяжелителей буровых глинистых растворов.

Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeO.Fe2O3, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в коре выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, имеющий форму чёрных удлинённых кристаллов и радиально-лучистых агрегатов.

В природе также широко распространены сульфиды железа - пирит FeS2(серный или железный колчедан) и пирротин. Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Другие часто встречающиеся минералы железа:

· Сидерит - FeCO3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом.

· Марказит - FeS2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов.

· Лёллингит - FeAs2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов.

· Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм.

· Мелантерит - FeSO4·7H2O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие.

· Вивианит - Fe3(PO4)2·8H2O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов.

В земной коре содержатся и другие, менее распространенные минералы железа, например:

Основные месторождения железных руд

Основные месторождения железа находятся в Австралии, Бразилии, Венесуэле, Индии, Канаде, Либерии, России, США, Франции, Швеции.

Россия по запасам железных руд занимает одно из первых мест в мире.

Главные месторождения железной руды на геологической карте мира

Интересный геохимический факт:

Очень немногие элементы встречаются в природе в свободном виде. В такой форме они называются самородными. Металлы и большинство неметаллов вступают в соединение с другими элементами, особенно с кислородом, очень легко. Поэтому в земной коре они почти всегда находятся в связанном виде, в составе разных соединений. Железо является элементом весьма активным, легко окисляющимся, особенно в присутствии влаги. Однако в природе встречается самородное железо. Этослучай совершенно исключительный, потому что железо в самородном виде попадает в земную кору в составе метеоритов.

А вот что рассказывает в популярной книге о геохимии железа академик Ферсман:

«Железо принадлежит к важнейшим металлам мироздания. Мы видим его линии во всех космических телах, они сверкают нам в атмосферах раскаленных звезд, мы видим бурные атомы железа, мятущиеся на солнечной поверхности, они падают к нам ежегодно на землю в виде тонкой космической пыли, в виде железных метеоритов. В штате Аризона, в Южной Африке, у нас в бассейне Подкаменной Тунгуски упали грандиозные массы самородного железа, этого важнейшего металла мироздания. Геофизики утверждают, что весь центр Земли состоит из массы никелистого железа, и что наша земная кора есть такая же окалина, как те стекловидные шлаки, которые вытекают из доменной печи во время выплавки чугуна.

…Геохимики раскрывают нам историю железа. Они говорят о том, что даже земная кора на 4,2% состоит из железа, что из металлов только алюминия больше в окружающей нас природе, чем железа. Мы знаем, что оно входит в состав тех расплавленных масс, которые в виде оливиновых и базальтовых пород застывают в глубинах как самые тяжелые и первозданные породы. железо геохимия минерал месторождение

Мы знаем, что сравнительно мало железа остается в гранитных породах, о чнм говорят их светлые – белые, розовые, зеленые – краски. Но на земной поверхности сложные химические реакции всё же накапливают огромные запасы железной руды. Одни из них образуются в субтропиках, там, где периоды тропических дождей сменяются яркими солнечными днями знойного лета, где все растворимое вымывается из горных пород, и образуются большие скопления – корки руд железа и алюминия.

Мы знаем, как на дно озер северных стран, например, нашей Карелии, бурные воды, содержащие органическое вещество , приносят весной огромные количества железа из разных горных пород; на дне озер, куда стекают воды, осаждаются горошинки или целые стяжения железа при участии особых железных бактерий… Так, в болотах, морских глубинах, в течении долгой геологической истории нашей Земли образовались скопления железных руд; и нет никакого сомнения, что в ряде случаев животная и растительная жизнь оказала свое влияние на образование этих месторождений.

Так образовались крупные Керченские месторождения; так образовались, по всей вероятности, и огромные запасы железных руд Кривого Рога и Курской магнитной аномалии.

Руды этих двух последних месторождений так давно были отложены водами древних морей, что горячее дыхание глубин успело изменить их строение, и вместо бурых железняков, как в Керчи, мы видим здесь измененные черные руды, состоящие из железного блеска (гематита, или красного железняка) и магнитного железняка.

Странствование железа не прекращается на земной поверхности. Правда, в морской воде его накапливается очень мало; и правильно говорят, что эта вода почти не содержит железа. Однако в особых, исключительных условиях даже в море, в мелководных заливах отлагаются железистые осадки, целые железорудные залежи, которые встречаются и в ряде древних морских отложений. Так образовались наши знаменитые железорудные месторождения на Украине близ Хопра, Керчи и Аяти. Но на земной поверхности – в ручьях, реках, озерах, болотах – всюду странствует железо; и растения всегда находят для себя этот важный химический элемент , без которого невозможна растительная жизнь. Попробуйте лишить железа горшочек с цветами, и вы увидите, что цветы скоро потеряют свои краски и запах, листья сделаются желтыми, начнут сохнуть…

…Так в растении, в живом организме завершается круговорот железа на земле, и красные кровяные шарики в крови человека являются одним из последних этапов в странствовании этого металла, без которого нет ни жизни, ни мирного труда».

Будущее железа

Железный век - эпоха, начавшаяся еще в первобытной истории человечества, когда возникла металлургия железа и изготовление железных орудий – продолжается. Примерно всех девяносто всех используемых человечеством металлов и сплавов сделаны на основе железа. Железа выплавляется в мире примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Пластмассы? Но они в наше время чаще всего выполняют в различных конструкциях иные функции, а если уж их в соответствии с традицией пытаются ввести в ранг «незаменимых заменителей», то чаще всего они заменяют цветные металлы, а не черные. На замену стали идут лишь несколько процентов потребляемых нами пластиков.

Сплавы на основе железа универсальны, технологичны, доступны и в массе – дешевы. Сырьевая база этого металла тоже не вызывает опасений: уже разведанных запасов железных руд людям пока хватает. Кроме того, ученые уверены, что открытия, которые будут сделаны в области геохимии железа(а в дальнейшем – и космохимии железа), дадут человечеству новые источники этого незаменимого элемента. Исследования в этой области геохимии необходимы, потому что железо можно без преувеличения назвать фундаментом нашей цивилизации.


Литература

1) Википедия, статья «Железо»

2) Большая Советская Энциклопедия, статья «Железные руды»

(http://bse.sci-lib.com/article039128.html).

История

Железо, как инструментальный материал, известно с древнейших времён. Самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это изготовленные из метеоритного железа, то есть сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), украшения из египетских гробниц (около 3800 года до н. э.) и кинжал из шумерского города Ура (около 3100 года до н. э.). От небесного происхождения метеоритного железа происходит, видимо, одно из названий железа в греческом и латинском языках: «сидер» (что значит «звёздный»).

Изделия из железа, полученного выплавкой, известны со времени расселения арийских племён из Европы в Азию, острова Средиземного моря, и далее (конец 4-го и 3-е тысячелетие до н. э. ). Самые древние железные инструменты из известных - стальные лезвия, найденные в каменной кладке пирамиды Хеопса в Египте (построена около 2530 года до н. э. ). Как показали раскопки в Нубийской пустыне, уже в те времена египтяне, стараясь отделить добываемое золото от тяжёлого магнетитового песка, прокаливали руду с отрубями и подобными веществами, содержащими углерод. В результате на поверхности расплава золота всплывал слой тестообразного железа, который обрабатывали отдельно. Из этого железа ковались орудия, в том числе найденные в пирамиде Хеопса. Однако после внука Хеопса Менкаура (2471-2465 год до н. э.) в Египте наступила смута: знать во главе со жрецами бога Ра свергла правящую династию, и началась чехарда узурпаторов, закончившаяся воцарением фараона следующей династии Усеркара, которого жрецы объявили сыном и воплощением самого бога Ра (с тех пор это стало официальным статусом фараонов). В ходе этой смуты культурные и технические знания египтян пришли в упадок, и, так же как деградировало искусство строительства пирамид, технология производства железа была утеряна , вплоть до того, что позднее, осваивая в поисках медной руды Синайский полуостров, египтяне не обратили никакого внимания на имевшиеся там залежи железной руды, а получали железо от соседних хеттов и митаннийцев.

Первые освоили производства железа хатты , на это указывает древнейшее (2-е тысячелетие до н. э.) упоминание железа в текстах хеттов , основавших свою империю на территории хатттов (современной Анатолии в Турции). Так, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

Когда на город Пурусханду в поход я пошел, человек из города Пурусханды ко мне поклониться пришел (…?) и он мне 1 железный трон и 1 железный скипетр (?) в знак покорности (?) преподнес…

(источник: Гиоргадзе Г. Г. // Вестник древней истории. 1965. № 4.)

В древности мастерами железных изделий слыли халибы . В легенде об аргонавтах (их поход в Колхиду состоялся примерно за 50 лет до троянской войны) рассказывается, что царь Колхиды Эет дал Ясону железный плуг чтобы он вспахал поле Ареса, и описываются его подданные халиберы:

Они не пашут землю, не сажают плодовые деревья, не пасут стада на тучных лугах; они добывают руду и железо из необработанной земли и выменивают на них продукты питания. День не начинается для них без тяжкого труда, в темноте ночи и густом дыму проводят они, работая весь день…

Аристотель описал их способ получения стали: «халибы несколько раз промывали речной песок их страны - тем самым выделяя чёрный шлих (тяжелая фракция состоящая в основном из магнетита и гематита), и плавили в печах; полученный таким образом металл имел серебристый цвет и был нержавеющим».

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря : эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита , и обломков других пород, так что выплавляемая халибами сталь была легированной, и имела превосходные свойства. Такой своеобразный способ получения железа говорит о том, что халибы лишь распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона , у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди , серебра , золота и железа у древних хеттов были в соотношении 1: 160: 1280: 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога.

В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе - возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона Тутанхамона и его тестя Хаттусиля - царя хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя, и посылает только один кинжал из «хорошего железа» (то есть стали). Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты новые месторождения железа и рудники. Так на смену «Бронзовому» веку настал век «Железный».

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады » Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев :

«Прочие мужи ахейские меной вино покупали,
Те за звенящую медь, за седое железо меняли,
Те за воловые кожи или волов круторогих,
Те за своих полоненых. И пир уготовлен веселый…»

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

«Расторопный ковач, изготовив топор иль секиру,
В воду металл, раскаливши его, чтоб двойную
Он крепость имел, погружает…»

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах - от древнего «Horn» - рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру - заметно меньше температуры плавления чугуна , поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. Так получалось «хорошее железо» - и хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими и твердыми, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке - домна , домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100-1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке) и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron , по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторной переплавке в печи с усиленным продуванием через него воздуха, чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Библиография: Карл Бакс. Богатства земных недр. М.: Прогресс, 1986, стр. 244, глава «Железо»

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза , укр. залізо , ст.-слав. желѣзо , болг. желязо , сербохорв. жељезо , польск. żelazo , чеш. železo , словен. železo ).

Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός , что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха » и *glazъ «скала», с общей семой «камень » . Третья версия предполагает древнее заимствование из неизвестного языка .

Германские языки заимствовали название железа (готск. eisarn , англ. iron , нем. Eisen , нидерл. ijzer , дат. jern , швед. järn ) из кельтских .

Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h 1 esh 2 r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish 2 ro- «сильный, святой, обладающий сверхъестественной силой» .

Древнегреческое слово σίδηρος , возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра .

Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus , означающее «звезда», вероятно, имеют общее происхождение.

Изотопы

Природное железо состоит из четырёх стабильных изотопов : 54 Fe (изотопная распространённость 5,845 %), 56 Fe (91,754 %), 57 Fe (2,119 %) и 58 Fe (0,282 %). Так же известно более 20 нестабильных изотопов железа с массовыми числами от 45 до 72, наиболее устойчивые из которых - 60 Fe (период полураспада по уточнённым в 2009 году данным составляет 2,6 миллиона лет ), 55 Fe (2,737 года), 59 Fe (44,495 суток) и 52 Fe (8,275 часа); остальные изотопы имеют период полураспада менее 10 минут .

Изотоп железа 56 Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд (см. Железная звезда), а все последующие элементы могут образоваться только в результате взрывов сверхновых .

Геохимия железа

Гидротермальный источник с железистой водой. Оксиды железа окрашивают воду в бурый цвет

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию . При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002-0,02 мг/л. В речной воде несколько выше - 2 мг/л.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe 2 O 3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород .

По кристаллохимическим свойствам ион Fe 2+ близок к ионам Mg 2+ и Ca 2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит , Fe 2 O 3 ; содержит до 70 % Fe), магнитный железняк (магнетит , FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания , образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые , или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты .

В природе также широко распространены сульфиды железа - пирит FeS 2 (серный или железный колчедан) и пирротин . Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

По запасам железных руд Россия занимает первое место в мире. Содержание железа в морской воде - 1·10 −5 -1·10 −8 %.

Другие часто встречающиеся минералы железа:

  • Сидерит - FeCO 3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5-4,5 по шкале Мооса.
  • Марказит - FeS 2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6-4,9 г/см³ и твёрдостью 5-6 по шкале Мооса.
  • Лёллингит - FeAs 2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7-7,4 г/см³, твёрдость 5-5,5 по шкале Мооса.
  • Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6-6,2 г/см³ и твёрдостью 5,5-6 по шкале Мооса.
  • Мелантерит - FeSO 4 ·7H 2 O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8-1,9 г/см³.
  • Вивианит - Fe 3 (PO 4) 2 ·8H 2 O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5-2 по шкале Мооса.

Помимо вышеописанных минералов железа существуют, например:

Основные месторождения

По данным Геологической службы США (оценка 2011 г.), мировые разведанные запасы железной руды составляют порядка 178 млрд тонн. Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Украине, Франции, Индии. В России железо добывается на Курской магнитной аномалии (КМА), Кольском полуострове, в Карелии и в Сибири. Значительную роль в последнее время приобретают донные океанские месторождения, в которых железо совместно с марганцем и другими ценными металлами находится в конкрециях.

Получение

В промышленности железо получают из железной руды , в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C . В доменной печи углерод в виде кокса , железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод в виде кокса окисляется до монооксида углерода . Данный оксид образуется при горении в недостатке кислорода :

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III) :

Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция:

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи , содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишки углерода и другие примеси (сера , фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана , которые содержат водород . Водород легко восстанавливает железо:

,

при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле . Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей .

Физические свойства

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α-γ переходам кристаллической решётки происходит термообработка стали . Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо относится к умеренно тугоплавким металлом . В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.

Температура плавления железа 1539 °C, температура кипения - 2862 °C.

Химические свойства

Характерные степени окисления

  • Кислота в свободном виде не существует - получены только её соли.

Для железа характерны степени окисления железа - +2 и +3.

Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.

Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO 2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .

Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Свойства простого вещества

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида , препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины , который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe 2 O 3 ·xH 2 O.

Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадок турнбулевой сини :

Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen 3 (максимум светопоглощения - 520 нм) в широком диапазоне рН (4-9) .

Соединения железа (III)

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов , например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN − . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа 2+ , + , Fe(SCN) 3 , - . Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K 4 (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и 4− выпадает ярко-синий осадок берлинской лазури :

Соединения железа (VI)

Окислительные свойства ферратов используют для обеззараживания воды.

Соединения железа VII и VIII

Имеются сообщения об электрохимическом получении соединений железа(VIII). , , , однако независимых работ, подтверждающих эти результаты, нет.

Применение

Железная руда

Железо - один из самых используемых металлов , на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
  • Железо может входить в состав сплавов на основе других металлов - например, никелевых.
  • Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  • Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  • Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  • Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат .
  • Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  • Железо применяется в качестве анода в железо-никелевых аккумуляторах , железо-воздушных аккумуляторах .
  • Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Биологическое значение железа

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом . В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол , в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК .

Неорганические соединения железа встречаются в некоторых бактериях , иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень , мясо , яйца , бобовые , хлеб , крупы , свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа - был потерян «лишний» ноль после запятой).

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

Примечания

  1. Химическая энциклопедия: в 5 т / Редкол.: Кнунянц И. Л. (гл. ред.). - М .: Советская энциклопедия, 1990. - Т. 2. - С. 140. - 671 с. - 100 000 экз.
  2. Карапетьянц М. Х. , Дракин С. И. Общая и неорганическая химия: Учебник для вузов. - 4-е изд., стер. - М.: Химия, 2000, ISBN 5-7245-1130-4 , с. 529
  3. М. Фасмер. Этимологический словарь русского языка. - Прогресс. - 1986. - Т. 2. - С. 42-43.
  4. Трубачёв О. Н. Славянские этимологии. // Вопросы славянского языкознания, № 2, 1957.
  5. Boryś W. Słownik etymologiczny języka polskiego. - Kraków: Wydawnictwo Literackie. - 2005. - С. 753-754.
  6. Walde A. Lateinisches etymologisches Wörterbuch. - Carl Winter’s Universitätsbuchhandlung. - 1906. - С. 285.
  7. Мейе А. Основные особенности германской группы языков. - УРСС. - 2010. - С. 141.
  8. Matasović R. Etymological Dictionary of Proto-Celtic. - Brill. - 2009. - С. 172.
  9. Mallory, J. P., Adams, D. Q. Encyclopedia of Indo-European Culture. - Fitzroy-Dearborn. - 1997. - P. 314.
  10. «New Measurement of the 60 Fe Half-Life». Physical Review Letters 103 : 72502. DOI :10.1103/PhysRevLett.103.072502 .
  11. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties ». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 .
  12. Ю. М. Широков, Н. П. Юдин. Ядерная физика. М.: Наука, 1972. Глава Ядерная космофизика .
  13. Р. Рипан, И. Четяну. Неорганическая химия // Химия неметаллов = Chimia metalelor. - Москва: Мир, 1972. - Т. 2. - С. 482-483. - 871 с.
  14. Gold and Precious Metals
  15. Металловедение и термическая обработка стали. Справ. изд. В 3-х т./ Под ред. М. Л. Берштейна, А. Г. Рахштадта. - 4-е изд., перераб. и доп. Т. 2. Основы термической обработки. В 2-х кн. Кн. 1. М.: Металлургия, 1995. 336 с.
  16. T. Takahashi & W.A. Bassett, "High-Pressure Polymorph of Iron ," Science , Vol. 145 #3631, 31 Jul 1964, p 483-486.
  17. Schilt A. Analytical Application of 1,10-phenantroline and Related Compounds. Oxford, Pergamon Press, 1969.
  18. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989. С. 297.
  19. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989, С. 315.
  20. Брауэр Г. (ред.) Руководство по неорганическому синтезу. т. 5. М., Мир, 1985. С. 1757-1757.
  21. Реми Г. Курс неорганической химии. т. 2. М., Мир, 1966. С. 309.
  22. Киселёв Ю. М., Копелев Н. С., Спицын В. И., Мартыненко Л. И. Восьмивалентное железо // Докл. АН СССР. 1987. Т.292. С.628-631
  23. Перфильев Ю. Д., Копелев Н. С., Киселёв Ю. М., Спицын В. И. Мёссбауэровское исследование восьмивалентного железа // Докл. АН СССР. 1987. T.296. С.1406-1409
  24. Kopelev N.S., Kiselev Yu.M., Perfiliev Yu.D. Mossbauer spectroscopy of the oxocomplexes iron in higher oxidation states // J. Radioanal. Nucl. Chem. 1992. V.157. Р.401-411.
  25. «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» МР 2.3.1.2432-08

Источники (к разделу История)

  • Г. Г. Гиоргадзе. «Текст Анитты» и некоторые вопросы ранней истории хеттов
  • Р. М. Абрамишвили. К вопросу об освоении железа на территории Восточной Грузии, ВГМГ, XXII-В, 1961.
  • Хахутайшвили Д. А. К истории древнеколхской металлургии железа. Вопросы древней истории (Кавказско-ближневосточный сборник, вып. 4). Тбилиси, 1973.
  • Геродот. «История», 1:28.
  • Гомер. «Илиада», «Одиссея».
  • Вергилий. «Энеида», 3:105.
  • Аристотель. «О невероятных слухах», II, 48. ВДИ, 1947, № 2, стр. 327.
  • Ломоносов М. В. Первые основания металлургии.

См. также

  • Категория:Соединения железа

Ссылки

  • Болезни, вызванные недостатком и избытком железа в организме человека
  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).